216 research outputs found

    Rapidity dependence of elliptic and triangular flow in proton-nucleus collisions from collective dynamics

    Get PDF
    The rapidity dependence of elliptic, v2v_2, and triangular, v3v_3, flow coefficients in proton-nucleus (p+A) collisions is predicted in hydrodynamics and in a multi-phase transport model (AMPT). We find that vnv_n (n=2,3n=2,3) on a nucleus side is significantly larger than on a proton side and the ratio between the two, vnPb/vnpv_n^{\rm Pb}/v_n^{\rm p}, weekly depends on the transverse momentum of produced particles.Comment: 6 pages, 8 figure

    Experimental and modelling study of fatigue crack initiation in an aluminium beam with a hole under 4-point bending

    Get PDF
    Slip band formation and crack initiation during cyclic fatigue were investigated by in-situ experiments and non-local CPFEM simulations systematically. Experimental techniques including EBSD, digital image correlation (DIC) and SEM have been used to obtain consistent grain orientations, local strains, as well as the locations where slip bands and micro-cracks form on the sample surface. The realistic microstructure based on the EBSD map has been generated and used for finite element modelling. An advanced non-local crystal plasticity model, which considers the isotropic and kinematic hardening of the plastic strain gradient, has been adopted. The simulation results match well the corresponding experimental results. It was found that total strain and averaged slip on all slip systems, combined with accumulated slip on specific slip planes help predict the location and orientation of slip bands and micro-crack initiation correctly. Furthermore, a fatigue indicating parameter based on competition between maximum slip and the total slip has been proposed to reproduce the experimental observations

    Search for neutrinoless decays tau -> 3l

    Get PDF
    We have searched for neutrinoless tau lepton decays into three charged leptons using an 87.1 fb^{-1} data sample collected with the Belle detector at the KEKB e^+e^- collider. Since the number of signal candidate events is compatible with that expected from the background, we set 90% confidence level upper limits on the branching fractions in the range (1.9-3.5) x 10^{-7} for various decay modes tau -> l l l where l represents e or mu.Comment: 12 pages, 4figure

    Pairing in nuclear systems: from neutron stars to finite nuclei

    Full text link
    We discuss several pairing-related phenomena in nuclear systems, ranging from superfluidity in neutron stars to the gradual breaking of pairs in finite nuclei. We focus on the links between many-body pairing as it evolves from the underlying nucleon-nucleon interaction and the eventual experimental and theoretical manifestations of superfluidity in infinite nuclear matter and of pairing in finite nuclei. We analyse the nature of pair correlations in nuclei and their potential impact on nuclear structure experiments. We also describe recent experimental evidence that points to a relation between pairing and phase transitions (or transformations) in finite nuclear systems. Finally, we discuss recent investigations of ground-state properties of random two-body interactions where pairing plays little role although the interactions yield interesting nuclear properties such as 0+ ground states in even-even nuclei.Comment: 74 pages, 33 figs, uses revtex4. Submitted to Reviews of Modern Physic

    The Developing Human Connectome Project: a minimal processing pipeline for neonatal cortical surface reconstruction

    Get PDF
    The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity

    V3 Loop Sequence Space Analysis Suggests Different Evolutionary Patterns of CCR5- and CXCR4-Tropic HIV

    Get PDF
    The V3 loop of human immunodeficiency virus type 1 (HIV-1) is critical for coreceptor binding and is the main determinant of which of the cellular coreceptors, CCR5 or CXCR4, the virus uses for cell entry. The aim of this study is to provide a large-scale data driven analysis of HIV-1 coreceptor usage with respect to the V3 loop evolution and to characterize CCR5- and CXCR4-tropic viral phenotypes previously studied in small- and medium-scale settings. We use different sequence similarity measures, phylogenetic and clustering methods in order to analyze the distribution in sequence space of roughly 1000 V3 loop sequences and their tropism phenotypes. This analysis affords a means of characterizing those sequences that are misclassified by several sequence-based coreceptor prediction methods, as well as predicting the coreceptor using the location of the sequence in sequence space and of relating this location to the CD4+ T-cell count of the patient. We support previous findings that the usage of CCR5 is correlated with relatively high sequence conservation whereas CXCR4-tropic viruses spread over larger regions in sequence space. The incorrectly predicted sequences are mostly located in regions in which their phenotype represents the minority or in close vicinity of regions dominated by the opposite phenotype. Nevertheless, the location of the sequence in sequence space can be used to improve the accuracy of the prediction of the coreceptor usage. Sequences from patients with high CD4+ T-cell counts are relatively highly conserved as compared to those of immunosuppressed patients. Our study thus supports hypotheses of an association of immune system depletion with an increase in V3 loop sequence variability and with the escape of the viral sequence to distant parts of the sequence space

    Averages of b -hadron, c -hadron, and τ -lepton properties as of 2021

    Get PDF
    This paper reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available before April 2021. In rare cases, significant results obtained several months later are also used. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays, and Cabibbo-Kobayashi-Maskawa matrix elements

    Averages of bb-hadron, cc-hadron, and τ\tau-lepton properties as of 2021

    Full text link
    This paper reports world averages of measurements of bb-hadron, cc-hadron, and τ\tau-lepton properties obtained by the Heavy Flavour Averaging Group using results available before April 2021. In rare cases, significant results obtained several months later are also used. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays, and Cabibbo-Kobayashi-Maskawa matrix elements.Comment: 568 pages. Update following journal review. No results changed. arXiv admin note: substantial text overlap with arXiv:1909.12524, arXiv:1612.07233, arXiv:1412.7515, arXiv:1207.1158, arXiv:1010.158

    Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018

    Get PDF
    This paper reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavour Averaging Group using results available through September 2018. In rare cases, significant results obtained several months later are also used. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays, and Cabibbo–Kobayashi–Maskawa matrix elements
    corecore