58 research outputs found

    The genome sequence of the yellow-dotted stilt, Euspilapteryx auroguttella Stephens, 1835

    Get PDF
    We present a genome assembly from an individual male Euspilapteryx auroguttella (the Yellow-dotted Stilt; Arthropoda; Insecta; Lepidoptera; Gracillariidae). The genome sequence is 331.9 megabases in span. Most of the assembly is scaffolded into 30 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 16.94 kilobases in length

    The genome sequence of the round-winged muslin, Thumatha senex (Hübner, 1804)

    Get PDF
    We present a genome assembly from an individual female Thumatha senex (the Round-winged Muslin; Arthropoda; Insecta; Lepidoptera; Erebidae). The genome sequence is 810.3 megabases in span. Most of the assembly is scaffolded into 30 chromosomal pseudomolecules, including the W and Z sex chromosomes. The mitochondrial genome has also been assembled and is 15.5 kilobases in length

    The genome sequence of the black-tipped ermine, Yponomeuta plumbella (Denis & Schiffermüller, 1775)

    Get PDF
    We present a genome assembly from an individual male Yponomeuta plumbella (the Black-tipped Ermine; Arthropoda; Insecta; Lepidoptera; Yponomeutidae). The genome sequence is 636.6 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 16.5 kilobases in length

    The genome sequence of the chequered fruit-tree tortrix, Pandemis corylana (Fabricius, 1794)

    Get PDF
    We present a genome assembly from an individual male Pandemis corylana (the Chequered Fruit-tree Tortrix; Arthropoda; Insecta; Lepidoptera; Tortricidae). The genome sequence is 441.6 megabases in span. Most of the assembly is scaffolded into 30 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.53 kilobases in length. Gene annotation of this assembly on Ensembl identified 19,608 protein coding genes

    The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence

    Get PDF
    BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative ‘effector islands’ in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.SE-vdA is supported by BBSRC grant BB/M014207/1. Sequencing was funded by BBSRC grant BB/F000642/1 to the University of Leeds and grant BB/F00334X/1 to the Wellcome Trust Sanger Institute). DRL was supported by a fellowship from The James Hutton Institute and the School of Biological Sciences, University of Edinburgh. GK was supported by a BBSRC PhD studentship. The James Hutton Institute receives funding from the Scottish Government. JAC and NEH are supported by the Wellcome Trust through its core funding of the Wellcome Trust Sanger Institute (grant 098051). This work was also supported by funding from the Canadian Safety and Security Program, project number CRTI09_462RD

    A sampling strategy for genome sequencing the British terrestrial arthropod fauna

    Get PDF
    The Darwin Tree of Life (DToL) project aims to sequence and assemble high-quality genomes from all eukaryote species in Britain and Ireland, with the first phase of the project concentrating on family-level coverage plus species of particular ecological, biomedical or evolutionary interest. We summarise the processes involved in (1) assessing the UK arthropod fauna and the status of individual species on UK lists; (2) prioritising and collecting species for initial genome sequencing; (3) handling methods to ensure that high-quality genomic DNA is preserved; and (4) compiling standard operating procedures for processing specimens for genome sequencing, identification verification and voucher specimen curation. We briefly explore some lessons learned from the pilot phase of DToL and the impact of the Covid-19 pandemic

    Genetic Networks Controlling Structural Outcome of Glucosinolate Activation across Development

    Get PDF
    Most phenotypic variation present in natural populations is under polygenic control, largely determined by genetic variation at quantitative trait loci (QTLs). These genetic loci frequently interact with the environment, development, and each other, yet the importance of these interactions on the underlying genetic architecture of quantitative traits is not well characterized. To better study how epistasis and development may influence quantitative traits, we studied genetic variation in Arabidopsis glucosinolate activation using the moderately sized Bayreuth×Shahdara recombinant inbred population, in terms of number of lines. We identified QTLs for glucosinolate activation at three different developmental stages. Numerous QTLs showed developmental dependency, as well as a large epistatic network, centered on the previously cloned large-effect glucosinolate activation QTL, ESP. Analysis of Heterogeneous Inbred Families validated seven loci and all of the QTL×DPG (days post-germination) interactions tested, but was complicated by the extensive epistasis. A comparison of transcript accumulation data within 211 of these RILs showed an extensive overlap of gene expression QTLs for structural specifiers and their homologs with the identified glucosinolate activation loci. Finally, we were able to show that two of the QTLs are the result of whole-genome duplications of a glucosinolate activation gene cluster. These data reveal complex age-dependent regulation of structural outcomes and suggest that transcriptional regulation is associated with a significant portion of the underlying ontogenic variation and epistatic interactions in glucosinolate activation
    corecore