902 research outputs found
A comparison of the Characteristics and Fate of Barrow's Goldeneye and Bufflehead Nests in Nest Boxes and Natural Cavities
Abstract. Barrow's Goldeneye (Bucephala islandica) and Bufflehead (B. albeola) are
cavity-nesting waterfowl that have received considerable attention in studies using nest
boxes, but little is known about their nesting ecology in natural cavities. We found larger
clutch size, lower nesting success, and different major predators for Barrow's Goldeneyes
nesting in boxes versus those nesting in natural cavities, but few differences for Bufflehead.
These differencesa re attributedt o the location and physical differencesb etween Barrow's
Goldeneyen est boxes and naturalc avities that affect theirc onspicuousnesst o predatorsa nd
conspecific nest-parasitizingfe males. Goldeneyeb oxes were concentratedin highly visible
locations such as trees at water or forest edge. Natural cavity nests, on the other hand, were
often abandoned Pileated Woodpecker (Dryocopus pileatus) cavities, which were more dispersed
throughout the forest interior and concealed under dense canopy cover. Bufflehead
natural cavity nests were typically closer to edges, which may account for their similarity
with boxes. We conclude that in some respects, studies of Barrow's Goldeneye that use nest
boxes may not be representativeo f birds nesting in naturalc avities, whereast hose of Bufflehead
are more likely to be so
Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation.
Emerging evidence indicates impairments in somatosensory function may be a major contributor to motor dysfunction associated with neurologic injury or disorders. However, the neuroanatomical substrates underlying the connection between aberrant sensory input and ineffective motor output are still under investigation. The primary somatosensory cortex (S1) plays a critical role in processing afferent somatosensory input and contributes to the integration of sensory and motor signals necessary for skilled movement. Neuroimaging and neurostimulation approaches provide unique opportunities to non-invasively study S1 structure and function including connectivity with other cortical regions. These research techniques have begun to illuminate casual contributions of abnormal S1 activity and connectivity to motor dysfunction and poorer recovery of motor function in neurologic patient populations. This review synthesizes recent evidence illustrating the role of S1 in motor control, motor learning and functional recovery with an emphasis on how information from these investigations may be exploited to inform stroke rehabilitation to reduce motor dysfunction and improve therapeutic outcomes
Semileptonic form factors - a model-independent approach
We demonstrate that the B->D(*) l nu form factors can be accurately predicted
given the slope parameter rho^2 of the Isgur-Wise function. Only weak
assumptions, consistent with lattice results, on the wavefunction for the light
degrees of freedom are required to establish this result. We observe that the
QCD and 1/m_Q corrections can be systematically represented by an effective
Isgur-Wise function of shifted slope. This greatly simplifies the analysis of
semileptonic B decay. We also investigate what the available semileptonic data
can tell us about lattice QCD and Heavy Quark Effective Theory. A rigorous
identity relating the form factor slope difference rho_D^2-rho_A1^2 to a
combination of form factor intercepts is found. The identity provides a means
of checking theoretically evaluated intercepts with experiment.Comment: 18 pages, Revtex, 4 postscript figures, uses epsfig.st
Renormalization Group Summation and the Free Energy of Hot QCD
Using an approach developed in the context of zero-temperature QCD to
systematically sum higher order effects whose form is fixed by the
renormalization group equation, we sum to all orders the leading log (LL) and
next-to-leading log (NLL) contributions to the thermodynamic free energy in hot
QCD. While the result varies considerably less with changes in the
renormalization scale than does the purely perturbative result, a novel
ambiguity arises which reflects the strong scheme dependence of thermal
perturbation theory.Comment: 7 pages REVTEX4, 2 figures; v2: typos correcte
Hybrid materials based on polyethylene and MCM-41 microparticles functionalized with silanes: catalytic aspects of in situ polymerization, crystalline features and mechanical properties
New nanocomposites based on polyethylene have been prepared by in situ polymerization of ethylene in
presence of mesoporous MCM-41. The polymerization reactions were performed using a zirconocene
catalyst either under homogenous conditions or supported onto mesoporous MCM-41 particles, which
are synthesized and decorated post-synthesis with two silanes before polymerization in order to promote
an enhanced interfacial adhesion. The existence of polyethylene chains able to crystallize within
the mesoporous channels in the resulting nanocomposites is figured out from the small endothermic
process, located at around 80 C, on heating calorimetric experiments, in addition to the main melting
endotherm. These results indicate that polyethylene macrochains can grow up during polymerization
either outside or inside the MCM-41 channels, these keeping their regular hexagonal arrangements.
Mechanical response is observed to be dependent on the content in mesoporous MCM-41 and on the
crystalline features of polyethylene. Accordingly, stiffness increases and deformability decreases in the
nanocomposites as much as MCM-41 content is enlarged and polyethylene amount within channels is
raised. Ultimate mechanical performance improves with MCM-41 incorporation without varying the
final processing temperature
Surprises in the Orbital Magnetic Moment and g-Factor of the Dynamic Jahn-Teller Ion C_{60}^-
We calculate the magnetic susceptibility and g-factor of the isolated
C_{60}^- ion at zero temperature, with a proper treatment of the dynamical
Jahn-Teller effect, and of the associated orbital angular momentum, Ham-reduced
gyromagnetic ratio, and molecular spin-orbit coupling. A number of surprises
emerge. First, the predicted molecular spin-orbit splitting is two orders of
magnitude smaller than in the bare carbon atom, due to the large radius of
curvature of the molecule. Second, this reduced spin-orbit splitting is
comparable to Zeeman energies, for instance, in X-band EPR at 3.39KGauss, and a
field dependence of the g-factor is predicted. Third, the orbital gyromagnetic
factor is strongly reduced by vibron coupling, and so therefore are the
effective weak-field g-factors of all low-lying states. In particular, the
ground-state doublet of C_{60}^- is predicted to show a negative g-factor of
\sim -0.1.Comment: 19 pages RevTex, 2 postscript figures include
Interaction of free-floating planets with a star-planet pair
The recent discovery of free-floating planets and their theoretical
interpretation as celestial bodies, either condensed independently or ejected
from parent stars in tight clusters, introduced an intriguing possibility.
Namely, that some exoplanets are not condensed from the protoplanetary disk of
their parent star. In this novel scenario a free-floating planet interacts with
an already existing planetary system, created in a tight cluster, and is
captured as a new planet. In the present work we study this interaction process
by integrating trajectories of planet-sized bodies, which encounter a binary
system consisting of a Jupiter-sized planet revolving around a Sun-like star.
To simplify the problem we assume coplanar orbits for the bound and the
free-floating planet and an initially parabolic orbit for the free-floating
planet. By calculating the uncertainty exponent, a quantity that measures the
dependence of the final state of the system on small changes of the initial
conditions, we show that the interaction process is a fractal classical
scattering. The uncertainty exponent is in the range (0.2-0.3) and is a
decreasing function of time. In this way we see that the statistical approach
we follow to tackle the problem is justified. The possible final outcomes of
this interaction are only four, namely flyby, planet exchange, capture or
disruption. We give the probability of each outcome as a function of the
incoming planet's mass. We find that the probability of exchange or capture (in
prograde as well as retrograde orbits and for very long times) is
non-negligible, a fact that might explain the possible future observations of
planetary systems with orbits that are either retrograde or tight and highly
eccentric.Comment: 19 pages, 12 figure
Spatial Stability of Incompressible Attachment-Line Flow
Linear stability analysis of incompressible attachment-line flow is presented within the spatial framework. The system of perturbation equations is solved using spectral collocation. This system has been solved in the past using the temporal approach and the current results are shown to be in excellent agreement with neutral temporal calculations. Results amenable to direct comparison with experiments are then presented for the case of zero suction. The global solution method utilized for solving the eigenproblem yields, aside from the well-understood primary mode, the full spectrum of least-damped waves. Of those, a new mode, well separated from the continuous spectrum is singled out and discussed. Further, relaxation of the condition of decaying perturbations in the far-field results in the appearance of sinusoidal modes akin to those found in the classical Orr-Sommerfeld problem. Finally, the continuous spectrum is demonstrated to be amenable to asymptotic analysis. Expressions are derived for the location, in parameter space, of the continuous spectrum, as well as for the limiting cases of practical interest. In the large Reynolds number limit the continuous spectrum is demonstrated to be identical to that of the Orr-Sommerfeld equation
Operation of an optoelectronic crossbar switch containing a terabit-per-second free-space optical interconnect
The experimental operation of a terabit-per-second scale optoelectronic connection to a silicon very-large-scale-integrated circuit is described. A demonstrator system, in the form of an optoelectronic crossbar switch, has been constructed as a technology test bed. The assembly and testing of the components making up the system, including a flip-chipped InGaAs-GaAs optical interface chip, are reported. Using optical inputs to the electronic switching chip, single-channel routing of data through the system at the design rate of 250 Mb/s (without internal fan-out) was achieved. With 4000 optical inputs, this corresponds to a potential aggregate data input of a terabit per second into the single 14.6 /spl times/ 15.6 mm CMOS chip. In addition 50-Mb/s data rates were switched utilizing the full internal optical fan-out included in the system to complete the required connectivity. This simultaneous input of data across the chip corresponds to an aggregate data input of 0.2 Tb/s. The experimental system also utilized optical distribution of clock signals across the CMOS chip
Measurement of single pi0 production in neutral current neutrino interactions with water by a 1.3 GeV wide band muon neutrino beam
Neutral current single pi0 production induced by neutrinos with a mean energy
of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near
detector of the K2K long baseline neutrino experiment. The cross section for
this process relative to the total charged current cross section is measured to
be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of
produced pi0s is measured and is found to be in good agreement with an
expectation from the present knowledge of the neutrino cross sections.Comment: 6 pages, 4 figures, Submitted to Phys. Lett.
- …