89 research outputs found

    First report of Theileria annulata in Nigeria: Findings from cattle ticks in Zamfara and Sokoto States

    Get PDF
    Background: Ticks and tick-borne pathogens (TBPs) represent a significant economic burden to cattle farming in sub-Saharan Africa including Nigeria. However, in the northern part of this country, where the largest livestock population resides, little is known about the contemporary diversity of ticks and TBPs. This area is particularly vulnerable to climate change, undergoing marked transformation of habitat and associated flora and fauna that is also likely to include ticks. This study aimed to document the occurrence of tick species and Apicomplexan TBPs in cattle from north-western Nigeria. Methods: In 2017, ticks were collected from cattle in Zamfara and Sokoto States and identified morphologically. Additionally, a subset of ticks was screened molecularly for the detection of apicomplexan DNA. Results: A total of 494 adult ticks were collected from 80 cattle in Zamfara and 65 cattle in Sokoto State. Nine tick species were encountered, among which the presence of one, Hyalomma turanicum, had not previously been recorded in Nigeria. Hyalomma rufipes was the most prevalent tick infesting cattle in Zamfara State (76%), while Hyalomma dromedarii was the most prevalent in Sokoto State (44%), confirming the widespread transfer of this species from camels onto livestock and its adaptation to cattle in the region. Of 159 ticks screened, 2 out of 54 (3.7%) from Zamfara State and 29 out of 105 (27.6%) from Sokoto State harboured DNA of Theileria annulata, the agent of tropical theileriosis. Conclusions: This study confirms the presence of a broad diversity of tick species in cattle from north-western Nigeria, providing the first locality records for Zamfara State. The occurrence of H. turanicum indicates a distribution of this tick beyond northern Africa. This study provides the first report for T. annulata in Nigerian ticks. Given its enormous burden on livestock farming in north Africa and across Asia, further investigations are needed to better understand its epidemiology, vector transmission and potential clinical significance in cattle from northern Nigeria and neighbouring Sahelian countries

    Resource competition drives an invasion-replacement event among shrew species on an island

    Get PDF
    Invasive mammals are responsible for the majority of native species extinctions on islands. While most of these extinction events will be due to novel interactions between species (e.g. exotic predators and naive prey), it is more unusual to find incidences where a newly invasive species causes the decline/extinction of a native species on an island when they normally coexist elsewhere in their overlapping mainland ranges. We investigated if resource competition between two insectivorous small mammals was playing a significant role in the rapid replacement of the native pygmy shrew Sorex minutus in the presence of the recently invading greater white-toothed shrew Crocidura russula on the island of Ireland. We used DNA metabarcoding of gut contents from >300 individuals of both species to determine each species' diet and measured the body size (weight and length) during different stages of the invasion in Ireland (before, during and after the species come into contact with one another) and on a French island where both species have long coexisted (acting as a natural ‘control’ site). Dietary composition, niche width and overlap and body size were compared in these different stages. The body size of the invasive C. russula and composition of its diet changes between when it first invades an area and after it becomes established. During the initial stages of the invasion, individual shrews are larger and consume larger sized invertebrate prey species. During later stages of the invasion, C. russula switches to consuming smaller prey taxa that are more essential for the native species. As a result, the level of interspecific dietary overlap increases from between 11% and 14% when they first come into contact with each other to between 39% and 46% after the invasion. Here we show that an invasive species can quickly alter its dietary niche in a new environment, ultimately causing the replacement of a native species. In addition, the invasive shrew could also be potentially exhausting local resources of larger invertebrate species. These subsequent changes in terrestrial invertebrate communities could have severe impacts further downstream on ecosystem functioning and services

    Dissemination of Spotted Fever Rickettsia Agents in Europe by Migrating Birds

    Get PDF
    Migratory birds are known to play a role as long-distance vectors for many microorganisms. To investigate whether this is true of rickettsial agents as well, we characterized tick infestation and gathered ticks from 13,260 migratory passerine birds in Sweden. A total of 1127 Ixodes spp. ticks were removed from these birds and the extracted DNA from 957 of them was available for analyses. The DNA was assayed for detection of Rickettsia spp. using real-time PCR, followed by DNA sequencing for species identification. Rickettsia spp. organisms were detected in 108 (11.3%) of the ticks. Rickettsia helvetica, a spotted fever rickettsia associated with human infections, was predominant among the PCR-positive samples. In 9 (0.8%) of the ticks, the partial sequences of 17kDa and ompB genes showed the greatest similarity to Rickettsia monacensis, an etiologic agent of Mediterranean spotted fever-like illness, previously described in southern Europe as well as to the Rickettsia sp.IrITA3 strain. For 15 (1.4%) of the ticks, the 17kDa, ompB, gltA and ompA genes showed the greatest similarity to Rickettsia sp. strain Davousti, Rickettsia japonica and Rickettsia heilongjiangensis, all closely phylogenetically related, the former previously found in Amblyomma tholloni ticks in Africa and previously not detected in Ixodes spp. ticks. The infestation prevalence of ticks infected with rickettsial organisms was four times higher among ground foraging birds than among other bird species, but the two groups were equally competent in transmitting Rickettsia species. The birds did not seem to serve as reservoir hosts for Rickettsia spp., but in one case it seems likely that the bird was rickettsiemic and that the ticks had acquired the bacteria from the blood of the bird. In conclusion, migratory passerine birds host epidemiologically important vector ticks and Rickettsia species and contribute to the geographic distribution of spotted fever rickettsial agents and their diseases

    From the animal house to the field : are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)?

    Get PDF
    Inbred mouse strains, living in simple laboratory environments far removed from nature, have been shown to vary consistently in their immune response. However, wildlife populations are typically outbreeding and face a multiplicity of challenges, parasitological and otherwise. In this study we seek evidence of consistent difference in immunological profile amongst individuals in the wild. We apply a novel method in this context, using longitudinal (repeated capture) data from natural populations of field voles, Microtus agrestis, on a range of life history and infection metrics, and on gene expression levels. We focus on three immune genes, IFN-γ, Gata3, and IL-10, representing respectively the Th1, Th2 and regulatory elements of the immune response. Our results show that there was clear evidence of consistent differences between individuals in their typical level of expression of at least one immune gene, and at most all three immune genes, after other measured sources of variation had been taken into account. Furthermore, individuals that responded to changing circumstances by increasing expression levels of Gata3 had a correlated increase in expression levels of IFN-γ. Our work stresses the importance of acknowledging immunological variation amongst individuals in studies of parasitological and infectious disease risk in wildlife populations

    Genetic variants of Anaplasma phagocytophilum from 14 equine granulocytic anaplasmosis cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Equine Granulocytic Anaplasmosis (EGA) is caused by <it>Anaplasma phagocytophilum</it>, a tick-transmitted, obligate intracellular bacterium. In Europe, it is transmitted by <it>Ixodes ricinus</it>. A large number of genetic variants of <it>A. phagocytophilum </it>circulate in nature and have been found in ticks and different animals. Attempts have been made to assign certain genetic variants to certain host species or pathologies, but have not been successful so far. The purpose of this study was to investigate the causing agent <it>A. phagocytophilum </it>of 14 cases of EGA in naturally infected horses with molecular methods on the basis of 4 partial genes (<it>16S rRNA</it>, <it>groEL</it>, <it>msp2</it>, and <it>msp4</it>).</p> <p>Results</p> <p>All DNA extracts of EDTA-blood samples of the horses gave bands of the correct nucleotide size in all four genotyping PCRs. Sequence analysis revealed 4 different variants in the partial <it>16S rRNA</it>, <it>groEL </it>gene and <it>msp2 </it>genes, and 3 in the <it>msp4 </it>gene. One <it>16S rRNA </it>gene variant involved in 11 of the 14 cases was identical to the "prototype" variant causing disease in humans in the amplified part [GenBank: <ext-link ext-link-id="U02521" ext-link-type="gen">U02521</ext-link>]. Phylogenetic analysis revealed as expected for the <it>groEL </it>gene that sequences from horses clustered separately from roe deer. Sequences of the partial <it>msp2 </it>gene from this study formed a separate cluster from ruminant variants in Europe and from all US variants.</p> <p>Conclusions</p> <p>The results show that more than one variant of <it>A. phagocytophilum </it>seems to be involved in EGA in Germany. The comparative genetic analysis of the variants involved points towards different natural cycles in the epidemiology of <it>A. phagocytophilum</it>, possibly involving different reservoir hosts or host adaptation, rather than a strict species separation.</p

    Sex Differential Genetic Effect of Chromosome 9p21 on Subclinical Atherosclerosis

    Get PDF
    BACKGROUND: Chromosome 9p21 has recently been shown to be a risk region for a broad range of vascular diseases. Since carotid intima-media thickness (IMT) and plaque are independent predictors for vascular diseases, the association between 9p21 and these two phenotypes was investigated. METHODOLOGY/PRINCIPAL FINDINGS: Carotid segment-specific IMT and plaques were obtained in 1083 stroke- and myocardial infarction-free volunteers. We tested the genotypes and haplotypes of key single nucleotide polymorphisms (SNPs) on chromosome 9p21 for the associations with carotid IMT and plaque. Multivariate permutation analyses demonstrated that carriers of the T allele of SNP rs1333040 were significantly associated with thicker common carotid artery (CCA) IMT (p=0.021) and internal carotid artery (ICA) IMT (p=0.033). The risk G allele of SNP rs2383207 was associated with ICA IMT (p=0.007). Carriers of the C allele of SNP rs1333049 were found to be significantly associated with thicker ICA IMT (p=0.010) and the greater risk for the presence of carotid plaque (OR=1.57 for heterozygous carriers; OR=1.75 for homozygous carriers). Haplotype analysis showed a global p value of 0.031 for ICA IMT and 0.115 for the presence of carotid plaque. Comparing with the other haplotypes, the risk TGC haplotype yielded an adjusted p value of 0.011 and 0.017 for thicker ICA IMT and the presence of carotid plaque respectively. Further analyzing the data separated by sex, the results were significant only in men but not in women. CONCLUSIONS: Chromosome 9p21 had a significant association with carotid atherosclerosis, especially ICA IMT. Furthermore, such genetic effect was in a gender-specific manner in the Han Chinese population

    A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism

    Get PDF
    Background: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA) plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. Principal Findings: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. Significance: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology

    Run-Off Replication of Host-Adaptability Genes Is Associated with Gene Transfer Agents in the Genome of Mouse-Infecting Bartonella grahamii

    Get PDF
    The genus Bartonella comprises facultative intracellular bacteria adapted to mammals, including previously recognized and emerging human pathogens. We report the 2,341,328 bp genome sequence of Bartonella grahamii, one of the most prevalent Bartonella species in wild rodents. Comparative genomics revealed that rodent-associated Bartonella species have higher copy numbers of genes for putative host-adaptability factors than the related human-specific pathogens. Many of these gene clusters are located in a highly dynamic region of 461 kb. Using hybridization to a microarray designed for the B. grahamii genome, we observed a massive, putatively phage-derived run-off replication of this region. We also identified a novel gene transfer agent, which packages the bacterial genome, with an over-representation of the amplified DNA, in 14 kb pieces. This is the first observation associating the products of run-off replication with a gene transfer agent. Because of the high concentration of gene clusters for host-adaptation proteins in the amplified region, and since the genes encoding the gene transfer agent and the phage origin are well conserved in Bartonella, we hypothesize that these systems are driven by selection. We propose that the coupling of run-off replication with gene transfer agents promotes diversification and rapid spread of host-adaptability factors, facilitating host shifts in Bartonella

    Babesia spp. in ticks and wildlife in different habitat types of Slovakia

    Get PDF
    Background: Babesiosis is an emerging and potentially zoonotic disease caused by tick-borne piroplasmids of the Babesia genus. New genetic variants of piroplasmids with unknown associations to vectors and hosts are recognized. Data on the occurrence of Babesia spp. in ticks and wildlife widen the knowledge on the geographical distribution and circulation of piroplasmids in natural foci. Questing and rodent-attached ticks, rodents, and birds were screened for the presence of Babesia-specific DNA using molecular methods. Spatial and temporal differences of Babesia spp. prevalence in ticks and rodents from two contrasting habitats of Slovakia with sympatric occurrence of Ixodes ricinus and Haemaphysalis concinna ticks and co-infections of Candidatus N. mikurensis and Anaplasma phagocytophilum were investigated. Results: Babesia spp. were detected in 1.5 % and 6.6 % of questing I. ricinus and H. concinna, respectively. Prevalence of Babesia-infected I. ricinus was higher in a natural than an urban/suburban habitat. Phylogenetic analysis showed that Babesia spp. from I. ricinus clustered with Babesia microti, Babesia venatorum, Babesia canis, Babesia capreoli/Babesia divergens, and Babesia odocoilei. Babesia spp. amplified from H. concinna segregated into two monophyletic clades, designated Babesia sp. 1 (Eurasia) and Babesia sp. 2 (Eurasia), each of which represents a yet undescribed novel species. The prevalence of infection in rodents (with Apodemus flavicollis and Myodes glareolus prevailing) with B. microti was 1.3 % in an urban/suburban and 4.2 % in a natural habitat. The majority of infected rodents (81.3 %) were positive for spleen and blood and the remaining for lungs and/or skin. Rodent-attached I. ricinus (accounting for 96.3 %) and H. concinna were infected with B. microti, B. venatorum, B. capreoli/B. divergens, Babesia sp. 1 (Eurasia), and Babesia sp. 2 (Eurasia). All B. microti and B. venatorum isolates were identical to known zoonotic strains from Europe. Less than 1.0 % of Babesia-positive ticks and rodents carried Candidatus N. mikurensis or A. phagocytophilum.Inst. de PatobiologíaFil: Hamsikova, Zuzana. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Kazimirová, Mária. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Harustiakova, Danka. Masaryk University. Faculty of Medicine and Faculty of Science, Institute of Biostatistics and Analyses; República ChecaFil: Mahrikova, Lenka. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Slovak, Mirko. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Berthova, Lenka. Slovak Academy of Sciences. Biomedical Research Center. Institute of Virology; EslovaquiaFil: Kocianova, Elena. Slovak Academy of Sciences. Biomedical Research Center. Institute of Virology; EslovaquiaFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore