3,593 research outputs found

    The effects of microcracking on the thermal expansion of graphite-epoxy composites

    Get PDF
    A study of the effects of thermal environment and microcracking in graphite epoxy composites was made. Research indicates that microcracking does affect the thermal expansion of composite laminates. The amount of reduction in thermal expansion was a function of the crack density. A maximum reduction of approximately 25% occurred in a quasi-isotropic specimen with a crack density of 2.05 mm 1 in the 90 deg plies. Laminate analysis with appropriate reductions in E sub 2 and Alpha sub 2 of the damaged plies appears to be capable of modeling the observe

    Thermal expansion of composites using Moire interferometry

    Get PDF
    An experimental technique for precise measurement of the thermal response of fiber-reinforced composite materials uses moire interferometry with fringe multiplication which yield a sensitivity of 833 nm (32.8 mu in.) per fringe. Results from the technique are compared with those obtained from electrical resistance strain gages, and also those predicted from classical lamination theory. Temperature dependent coefficients of thermal expansion for composite materials subjected to thermal cycling in the temperature range of 297 K (75 F) to 422 K (300 F) were determined for four laminate configurations (0, 90, 0/ + or - 45/90 sub s and 0/90/ + or - 45 sub s) of T300/5208 graphite epoxy, and ranged from -0.107 mu epsilon K/1 (-0.059 mu epsilon deg F/-) for the 0 laminate to 32.18 mu epsilon K/1 (17.88 mu epsilon F/1) for the 90 laminate. Moisture was found to greatly influence the thermal response of a quasi-isotropic laminate, resulting in hysteresis and residual compressive strain as the moisture content was reduced. Comparisons between moire and strain gage measurements were inconclusive with both techniques giving consistent but systematically different results. Differences of as much as 29% were observed

    Thermal expansion of graphite-epoxy between 116 K and 366 K

    Get PDF
    A Priest laser interferometer was developed to measure the thermal strain of composite laminates. The salient features of this interferometer are that: (1) it operates between 116 K and 366 K; (2) it is easy to operate; (3) minimum specimen preparation is required; (4) coefficients of thermal expansion in the range of 0-5 micro epsilon/K can be measured; and (5) the resolution of thermal strain is on the order of micro epsilon. The thermal response of quasi-isotropic, T300/5208, grahite-epoxy composite material was studied with this interferometer. The study showed that: (1) for the material tested, thermal cycling effects are negligible; (2) variability of thermal response from specimen to specimen may become significant at cryogenic temperatures; and (3) the thermal response of 0.6 cm and 2.5 cm wide specimens are the same above room temperature

    Development of a Priest interferometer for measurement of the thermal expansion of a graphite epoxy in the temperature range 116-366 K

    Get PDF
    The thermal expansion behavior of graphite epoxy laminates between 116 and 366 degrees Kelvin was investigated using as implementation of the Priest interferometer concept. The design, construction and use of the interferometer along with the experimental results it was used to generate are described. The experimental program consisted of 25 tests on 25.4 mm and 6.35 mm wide, 8 ply pi/4 quasi-isotropic T300-5208 graphite/epoxy specimens and 3 tests on a 25.4 mm wide unidirectional specimen. Experimental results are presented for all tests along with a discussion of the interferometer's limitations and some possible improvements in its design

    Long-Term Isothermal Aging Effects on Carbon Fabric-Reinforced PMR-15 Composites: Compression Strength

    Get PDF
    A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent

    Caddisflies (Trichoptera) of the Buffalo National River, Arkansas

    Get PDF
    We report 106 species of caddisflies (Trichoptera) representing 44 genera and 16 families that were collected across 50 sampling sites in the Buffalo River watershed. The species collected represent about 45% of the known Interior Highlands caddisfly fauna. The most speciose families collected were the Hydroptilidae (30), Leptoceridae (21), and Hydropsychidae (17). Two species found during this study, Paduniella nearctica and Ochrotrichia contorta, are listed as species of special concern in the state of Arkansas due to their relative rarity. Similarity analysis values among collection sites ranged from 9% to 77%. Seriation analysis of caddisfly genera and species showed that most are distributed throughout the entire Buffalo National River but some are restricted to either the upper or lower river or its tributaries. This represents the first comprehensive survey of caddisflies completed for the Buffalo National River

    Designing for time-dependent material response in spacecraft structures

    Get PDF
    To study the influence on overall deformations of the time-dependent constitutive properties of fiber-reinforced polymeric matrix composite materials being considered for use in orbiting precision segmented reflectors, simple sandwich beam models are developed. The beam models include layers representing the face sheets, the core, and the adhesive bonding of the face sheets to the core. A three-layer model lumps the adhesive layers with the face sheets or core, while a five-layer model considers the adhesive layers explicitly. The deformation response of the three-layer and five-layer sandwich beam models to a midspan point load is studied. This elementary loading leads to a simple analysis, and it is easy to create this loading in the laboratory. Using the correspondence principle of viscoelasticity, the models representing the elastic behavior of the two beams are transformed into time-dependent models. Representative cases of time-dependent material behavior for the facesheet material, the core material, and the adhesive are used to evaluate the influence of these constituents being time-dependent on the deformations of the beam. As an example of the results presented, if it assumed that, as a worst case, the polymer-dominated shear properties of the core behave as a Maxwell fluid such that under constant shear stress the shear strain increases by a factor of 10 in 20 years, then it is shown that the beam deflection increases by a factor of 1.4 during that time. In addition to quantitative conclusions, several assumptions are discussed which simplify the analyses for use with more complicated material models. Finally, it is shown that the simpler three-layer model suffices in many situations

    Asymptotically optimal quantum channel reversal for qudit ensembles and multimode Gaussian states

    Get PDF
    We investigate the problem of optimally reversing the action of an arbitrary quantum channel C which acts independently on each component of an ensemble of n identically prepared d-dimensional quantum systems. In the limit of large ensembles, we construct the optimal reversing channel R* which has to be applied at the output ensemble state, to retrieve a smaller ensemble of m systems prepared in the input state, with the highest possible rate m/n. The solution is found by mapping the problem into the optimal reversal of Gaussian channels on quantum-classical continuous variable systems, which is here solved as well. Our general results can be readily applied to improve the implementation of robust long-distance quantum communication. As an example, we investigate the optimal reversal rate of phase flip channels acting on a multi-qubit register.Comment: 17 pages, 3 figure

    Posttranslational processing of concanavalin A precursors in jackbean cotyledons

    Get PDF
    Metabolic labeling of immature jackbean cotyledons with 14C-amino acids was used to determine the processing steps involved in the assembly of concanavalin A. Pulse-chase experiments and analyses of immunoprecipitated lectin forms indicated a complex series of events involving seven distinct species. The structural relatedness of all of the intermediate species was confirmed by two-dimensional mapping of 125I-tryptic peptides. An initial glycosylated precursor was deglycosylated and cleaved into smaller polypeptides, which subsequently reannealed over a period of 10-27 h. NH2-terminal sequencing of the abundant precursors confirmed that the intact subunit of concanavalin A was formed by the reannealing of two fragments, since the alignment of residues 1-118 and 119-237 was reversed in the final form of the lectin identified in the chase and the precursor first labeled. When the tissue was pulse-chased in the presence of monensin, processing of the glycosylated precursor was inhibited. The weak bases NH4Cl and chloroquine were without effect. Immunocytochemical studies showed that monensin treatment caused the accumulation of immunoreactive material at the cell surface and indicated that the ionophore had induced the secretion of a component normally destined for deposition within the protein bodies. Consideration of the tertiary structure of the glycosylated precursor and mature lectin showed that the entire series of processing events could occur without significant refolding of the initial translational product. Proteolytic events included removal of a peptide from the surface of the precursor molecule that connected the NH2- and COOH-termini of the mature protein. This processing activated the carbohydrate-binding activity of the lectin. The chase data suggest the occurrence of a simultaneous cleavage and formation of a peptide bond, raising the possibility that annealment of the fragments to give rise to the mature subunit involves a transpeptidation event rather than cleavage and subsequent religation
    corecore