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Abstract. We investigate the problem of optimally reversing the action of an
arbitrary quantum channel C which acts independently on each component of
an ensemble of n identically prepared d-dimensional quantum systems. In the
limit of large ensembles, we construct the optimal reversing channel R?

n which
has to be applied at the output ensemble state, to retrieve a smaller ensemble of
m systems prepared in the input state, with the highest possible rate m/n. The
solution is found by mapping the problem into the optimal reversal of Gaussian
channels on multimode quantum-classical continuous variable systems, which
is solved here as well. Our general results can be readily applied to improve
the implementation of robust long-distance quantum communication. As an
example, we investigate the optimal reversal rate of phase flip channels acting
on a multi-qubit register.
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1. Introduction

Quantum channels are completely positive, trace-preserving maps which describe the state
change of a quantum system undergoing a noisy evolution. Operationally, a channel on a
d-dimensional system C : M(Cd) −→ M(Cd) can be implemented by first coupling the system
with state ρ to the ‘environment’ with initial state ρE, letting the two evolve together as a closed
system with unitary operator U , and subsequently tracing out the environmental degrees of
freedom [1, 2]

C : ρ 7−→ TrE(U (ρ ⊗ ρE)U
∗). (1)

Due to the last step, the dynamics described by a quantum channel is typically irreversible, a
basic fact which is related to several no-go theorems in quantum information [3–6]. In fact, a
channel is reversible on all states if and only if it is unitary i.e. C(ρ) = UρU ∗.

However, the reversibility problem has non-trivial solutions if the channel is required to
be reversible on a given family of states [6]. From a mathematical perspective, this scenario is
captured by the statistical concepts of quantum sufficiency and equivalence of statistical models.
In the latter, two families of states

Q := {ρθ : θ ∈ 2} and R := {σθ : θ ∈ 2}

are said to be statistically equivalent if there exist two channels T and S such that σθ = T (ρθ)

and ρθ = S(σθ) for all θ . In other words the channel T is reversible on Q, with an inverse S.
Sufficiency is a special case of this, where T (ρ) is the restriction of the state ρ to a subalgebra
of observables, which is then called sufficient with respect to Q. A general mathematical
characterization of equivalence and sufficiency has been given in [7], where a quantum analogue
of the classical factorization theorem for sufficient statistics has been established.

In this paper we consider a different but related channel reversal problem, see figure 1.
Consider an ensemble consisting of n � 1 independent and identically prepared quantum
systems which undergo separate noisy evolutions described by the channel C . The question is
whether the original state can be distilled from the noisy output by means of a reversing channel,
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(a)

(b)

Figure 1. Graphical depiction of the problem addressed in this paper. (a) Reversal
of arbitrary channels C acting independently on a register of n qudits, each
initialized in the state ρ. The optimal reversing channel Rn allows to recover
m qudits exactly in the state ρ, with the maximum possible output/input rate
m/n. (b) The problem can be recast into the reversal of a Gaussian channel
G acting on a set of generally multimode Gaussian states with unknown mean
M. The optimal reversing channel H restores the initial known covariance and
maximizes the output/input displacement ratio k. More details are provided in
the diagram (3) and in the accompanying text.

albeit at the expense of reducing the size of the ensemble due to the loss of information. More
precisely, we would like to find the maximum rate 0 = m/n for which there exist reversing
channels Rn : M(Cd)⊗n

7−→ M(Cd)⊗m such that the following holds:

ρ⊗n C⊗n

7−→ C(ρ)⊗n Rn
7−→ ρ⊗m (2)

asymptotically with n (see section 4 for the mathematical formulation). This and other
related questions have been considered in [4, 8] for the specific case of a qubit depolarizing
channel, but to our knowledge the case of a general qudit channel has not been investigated
elsewhere. The answer to our question is directly relevant to applications in quantum memories
[9, 10], distributed quantum computation [11], quantum key distribution [12], and long-distance
quantum communication [13]. Given a register of many qudits prepared off-line, in order to
securely store it or transmit it over lossy media, one needs to incorporate modules that perform
state purification or counteract decoherence effects, e.g. quantum repeaters [14].

The key to solving the problem lies in the quantum extension of a fundamental statistical
tool known as local asymptotic normality (LAN) [15, 16]. The quantum version of LAN [17–20]
shows that the joint state of an ensemble of identically prepared systems can be approximated
by a Gaussian state of a continuous variable system. More precisely, we parametrize the states
in a neighbourhood of size n−1/2+ε of ρ as ρM/

√
n where M is a (d2

− 1)-dimensional vector of
expectations such that ρ0 ≡ ρ; then there exists a channel Tn which maps the collective state
ρ⊗n

M/
√

n into a Gaussian state 8(M, V) of a quantum-classical continuous variable system, with
mean M and known fixed covariance V which depends only on ρ. Such a system is comprised
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of d(d − 1)/2 quantum modes and d − 1 classical variables. Conversely, given the (multimode)
Gaussian state, there exists a channel Sn which converts it into the multiple-qudits state with
asymptotically vanishing norm-one error, without the knowledge of the parameter M.

The schematic of the complete problem considered in this paper and its resolution using
LAN is shown below (see figure 1 for a visual summary):

ρ⊗n
(M,λ)

C⊗n

−−−→ ρ⊗n
(M′,λ′)

Rn
−−−→ ρ⊗m

(M,λ)

Tn

y Tn

y xSm

8(M, V)
G

−−−→ 8(M′, V′)
H

−−−→ 8(kM, V)

(3)

Using the LAN correspondence between the multiple-qudits states and the Gaussian states,
we demonstrate specifically the following results.

• The action of C⊗n on the qudits can be mimicked by the action of a Gaussian channel on
the Gaussian states, i.e. the rightmost square loop of the diagram (3) is (asymptotically)
commutative (cf theorem 4.1).

• The optimal qudit reversal problem for the channel C is effectively recast into a much
handier Gaussian one, of reversal of the Gaussian channel G [21–25] where the length of
the final displacement vector is allowed to be a fraction k of the initial length as illustrated
in the bottom row of the diagram (3); the problem is to find the maximum possible k and
the corresponding reversing channel H (cf theorem 4.2).

• The Gaussian reversal problem has an explicit solution (k?, H ?) as described in
theorem 2.1. The optimal reversal of a general Gaussian channel is in its own right an
important problem for continuous variable quantum communication and key distribution
[26, 27], which we solve in a specific case of input states associated with qudit ensembles.

• Putting together the above findings we prove that the concatenation Rn := Sm ◦ H ◦ Tn

realizes the optimal strategy for reversal of the channel C⊗n applied to n independent and
identically prepared qudits, and that the maximal qudit rate m/n in the top row of the
diagram (3) is equal to (k?)2, where k? is the maximum possible value of k for which the
Gaussian reversal is possible.

The paper is organized as follows. In section 2 we find the optimal procedure and rate
for reversing the action of general Gaussian channels on a family of Gaussian states with fixed
covariance and unknown mean. Section 3 contains a short review of LAN motivated by the
quantum central limit theorem (CLT). In section 4 we solve the problem of finding the optimal
rate and procedure for the reversal of a qudit channel by reducing it to the Gaussian problem via
LAN. In section 5 we illustrate the general results with a specific application to reversing phase
flip channels acting on a multiqubit register, a common source of errors arising in quantum
computation [1]. We draw our concluding remarks in section 6. Some technical proofs are
deferred to appendices.

2. Optimal reversal of a Gaussian channel

In order to solve the qudit channel reversal problem, it is necessary to obtain the solution to the
corresponding Gaussian problem. We begin with a short review of Gaussian states and channels,
referring the reader to [26–29] for more comprehensive accounts.
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2.1. Gaussian states and channels

Let Z = (A, B)T be the (column vector of) coordinates of a continuous variable system where
the components AT

= (Q1, P1, . . . , QK , PK ) are the canonical observables of K modes, and
BT

= (B1, . . . , BC) is a classical RC-valued random variable. In other words, the canonical
variables satisfy the commutation relations [Zk, Zl] = i�kl1 where � is the block-diagonal
symplectic form

� = Diag (σ, . . . , σ, 0C) , with σ =

(
0 1

−1 0

)
.

Throughout, we consider that the quantum variables are represented in the standard fashion
on the multi-mode Hilbert space H⊗K := L2(R)⊗K and the classical variables are realized as
coordinate multiplication operators on H⊗C so that the full Hilbert space is H⊗(K +C).

Any state 8 of the continuous variable system is completely determined by its
characteristic function

χ8(z) := 8
(

eizTZ
)

,

where 8(X) denotes the expectation of X with respect to 8. In particular, for every mean
M = 8(Z) and covariance matrix V with elements

Vkl = 8 (Zk ∗ Zl) − 8(Zk)8(Zl), Zk ∗ Zl :=
Zk Zl + Zl Zk

2
,

there is a unique Gaussian state 8(M, V) with characteristic function

χM,V(z) = eizTM−
1
2 zTVz, (4)

provided that V satisfies the uncertainty principle V>−
i
2�. For later use, we will denote by

φ(M, V) ∈ T1(HK )) ⊗ L1(RC) the density matrix of the state 8(M, V).
A Gaussian quantum channel is a channel as in (1), where the environment is a bosonic

continuous variable system whose initial state is Gaussian, and the unitary U is determined by
a quadratic Hamiltonian in the system and environment coordinates [21–25]. In the Heisenberg
picture, the action of a Gaussian channel G is

G∗ : B(H⊗K ) ⊗ L∞(R⊗C) → B(H⊗K ) ⊗ L∞(R⊗C),

G∗ : Wz 7−→ WXG ze
−

1
2 zTYG z, (5)

where Wz := eizTZ are the ‘Weyl operators’, XG , YG are real matrices of dimension 2K + C , with
YG positive and satisfying the matrix inequality

YG > i(XT
G�XG − �).

In particular, from (4) and (5) we find that when G acts on the state 8(M, V), it produces a new
Gaussian state 8(M′, V′) with mean M′

= XT
GM and covariance V′

= XT
GVXG + YG . While the

first term in V′ describes the change in variance due to the linear transformation XG , the second
term comes from the covariance of the ancillary ‘environment’ used to realize G. For more
details on Gaussian channels and their classification we refer to [22, 30].
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2.2. Optimal Gaussian channel reversal

Our problem can be stated as follows: given a Gaussian channel G, and a family of Gaussian
states

GV := {8(M, V) : M ∈ R2K +C
} (6)

with fixed covariance matrix V and unknown mean M, we would like to find the maximum
value k? of a constant k for which there exists a (not necessarily Gaussian) channel H such that
for all M ∈ R2K +C the following holds (see figure 1(b)):

H ◦ G (φ(M, V)) = φ(kM, V). (7)

A special case of this problem, for single-mode attenuation and amplification channels, has
been considered in [8]. Our first main result is to find k? and the optimal channel for the general
set-up.

Theorem 2.1. Let G be the Gaussian channel (5), and assume that XG is an invertible matrix.
The largest value of k for which G can be reversed on the family of states (6) is

k?
=

[
λmax

(
ς−

1
2 %ς−

1
2

)]−
1
2
, (8)

where λmax(·) denotes the maximum eigenvalue, and

% = (X−1
G )T

(
XT

GVXG + YG +
i

2
�

)
X−1

G , ς = V +
i

2
�

are positive matrices.
Equivalently, k? can be expressed in terms of the ‘max-relative entropy’ [31] as

log2(k
?−2

) = Dmax(%‖ς) := log2

(
min {k−2 : % 6 k−2ς}

)
.

For every k 6 k? there exists a reversing Gaussian channel H, of the form (5), with

XH = kX−1
G ,

YH = V − k2(X−1
G )T(XT

GVXG + YG)X−1
G .

(9)

Proof. Following a standard argument [8, 32], it can be shown that without loss of generality
we can restrict our attention to a certain class of displacement covariant reversing channels of
the form

T ∗(Wz) = f (z)WXz,

where X = kX−1
G and f (z) = Tr(τWz) is the characteristic function of some ancillary state τ

with zero mean. A displacement covariant channel H satisfies (7) if and only if

H ◦ G (φ(0, V)) = φ(0, V).

In terms of the characteristic functions, this means

χ8(z) = tr(eizTZ H(φ′))

= tr(H(eizTZ)φ′) = Tr(τWz) Tr(φ′ei(XH z)TZ)

= f (z)e−
1
2 (XH z)TV′(XH z).
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Since χ8 is a Gaussian characteristic functions, f (z) = tr(τWz) must also be a Gaussian
characteristic function. Hence H is a Gaussian channel.

Now, from (5) we see Gaussian channels are in one-to-one correspondence with two
matrices: the linear transformation on the means and the covariance (noise) matrix. The
Gaussian channel G and the reversal H are therefore completely characterized by G ⇔

(XG, YG) and H ⇔ (XH , YH ). For an initial state 8(M, V), we have that the first and second
moments are mapped by (H ◦G) as

(M, V) 7→ (XT
H XT

GM, XT
H (XT

GVXG + YG)XH + YH ).

By equating this with the target state moments (kM, V), we obtain immediately XH = kX−1
G .

Now, denoting V′
= XT

GVXG + YG , we have that the reverse outputs a covariance

V = XT
H V′XH + YH = k2(X−1

G )TV′X−1
G + YH . (10)

Positivity of the quantum channel states that

YH +
i

2
� −

i

2
k2(X−1

G )T�X−1
G > 0. (11)

We would like to find the maximum k for which there exists some YH which satisfies this
inequality. Rearranging (10) as

YH = V − k2(X−1
G )TV′X−1

G ,

then substituting in (11) gives

V +
i

2
�> k2(X−1

G )T

(
V′ +

i

2
�

)
X−1

G . (12)

This gives us a necessary and sufficient condition for a Gaussian channel G to be reversible up
to a factor k in the displacement. The optimal reversing channel H ? is the one for which k takes
its maximum possible value k?. To find k?, we can recast (12) in terms of a max-relative entropy
and use the results of [31] to obtain equation (8). ut

This result shows that any Gaussian channel G acting on Gaussian states with given
covariance, can be reversed up to a constant factor k by means of another Gaussian channel
H , whose construction is provided explicitly. The link between the threshold value k? and the
max-relative entropy [31] is intriguing, as it reveals that k? is operationally related to the optimal
Bayesian error probability in determining which covariance matrix our system is mapped into
by the channel G [33].

Explicit examples of Gaussian channel reversal on single-mode Gaussian states can be
found in [8], where the practically relevant cases of attenuation and amplification are discussed
in detail. We remark that the channel reversal is particularly effective in the realistic case of
mixed input states, while it can become of trivial use for pure input states. For instance, a
pure coherent state subject to attenuation cannot be deterministically re-amplified to another
pure state with a longer displacement vector, without adding extra noise (and thus altering the
covariance matrix). The optimal reversing G? in this case turns out to be, simply, the identity
channel, meaning that the incurred attenuation is not reversible. Additional error correction
techniques [34] to revert the action of various sources of errors on registers of pure and weakly
mixed Gaussian states could be necessary in practical implementations of continuous variable
quantum communication, possibly requiring non-Gaussian operations [35].
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3. Quick review of local asymptotic normality

The main tool used to solve the channel reversal problem on n-qudit ensembles in the next
section of this paper is that of quantum LAN, which was developed in [17–20] as an extension
of a key concept from classical asymptotic statistics [15]. For the reader’s convenience we give
here an intuitive explanation of LAN based on the quantum CLT.

In general terms, classical LAN means that given data consisting of n samples from
a probability distribution Pθ with unknown parameter θ ∈ Rk , there exist classical channels
(randomizations) which map the data into a single sample from a Gaussian distribution
whose mean is (locally) equal to θ , and whose variance is the inverse Fisher information
matrix I (θ)−1. A consequence of this is the fact that the maximum likelihood estimator
θ̂n is asymptotically normal (Gaussian) with asymptotic variance I (θ)−1, i.e. the following
convergence in distribution holds:

√
n(̂θn − θ)

L
−→ N (0, I (θ)−1)

and therefore saturates the Cramér–Rao bound [16].
Quantum LAN means that the joint quantum state of independent, identically prepared

finite-dimensional systems can be approximated in a strong sense by a quantum-classical
Gaussian state of fixed variance, whose mean encodes the information about the parameters
of the original state. In this way, a number of asymptotic problems can be reformulated in terms
of Gaussian states, for which the explicit solution can be found. Examples so far include state
estimation [36], system identification [37], teleportation benchmarks [38], state purification and
dilution [8] and quantum learning [39].

Suppose we are given n independent d-dimensional quantum systems (qudits) each
prepared in the unknown but mixed (full rank) state ρ ∈ M(Cd) with distinct eigenvalues. By
means of an adaptive estimation strategy, we can effectively localize the initial state of each
qudit within a neighborhood of size n−

1
2 +ε centred at an estimate ρ0. If λ1 > . . . > λd are the

eigenvalues of ρ0 then with respect to its eigenbasis, any neighbouring state can be written as

ρ(M/
√

n,λ) = ρ0 +
1

√
n


u1 31,2z∗

1,2 . . . 31,d z∗

1,d

31,2z1,2 u2
. . .

...
...

. . .
. . . 3d−1,d z∗

d−1,d

31,d z1,d . . . 3d−1,d zd−1,d −
∑d−1

i=1 ui

 , (13)

where M = (z, u) ∈ Cd(d−1)/2
×Rd−1 is a displacement parameter, and 3 jk =

√
(λ j − λk)/2

are constant coefficients chosen for later convenience. We can then define the local quantum
statistical model around ρ0 as

Qn =

{
ρ⊗n

(M/
√

n, λ)
: ‖M‖6 nε

}
. (14)

Let

{O1, ...., Od2−1} =
{
q1,2, p1,2, ...., qd−1,d, pd−1,d, b1, ...., bd−1

}
(15)

be the self-adjoint operators in M(Cd) defined as

q j,k :=
| j〉〈k| + | j〉〈k|√

2(λ j − λk)
, p j,k :=

i(|k〉〈 j | − | j〉〈k|)√
2(λ j − λk)

, bi := |i〉〈i | − λi 1. (16)
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One can verify easily that Oa satisfy the following properties.

(i) {O1, ...., Od2−1} is a basis in the space of operators with Tr(ρ0O) = 0.
(ii) Tr(ρ0[Oa, Ob]) = i�a,b where � is the (d2

− 1) × (d2
− 1) block diagonal symplectic

matrix � = Diag(σ, . . . , σ, 0d−1).

(iii) The covariance matrix V with

Vab := Tr(ρ0Oa ∗ Ob) (17)

has all elements equal to zero except

Tr(ρ0q2
j,k) = Tr(ρ0 p2

j,k) = v j,k :=
λ j + λk

2(λ j − λk)
, Tr(ρ0b j bk) := V cl

jk := δ jkλ j − λ jλk. (18)

Let Oi(n) ∈ M(Cd)⊗n denote the corresponding collective (fluctuation) observables

Oi(n) :=
n∑

s=1

O (s)
i , O (s)

i := 1 ⊗ . . . ⊗ Oi ⊗ . . . ⊗ 1, (19)

with O (s)
i acting on the position s of the tensor product. The collective observables play the

role of sufficient statistics for our model, and we would like to understand their asymptotic
behaviour. Since all systems are independent and identically prepared, and the terms in each
collective observable commute, we can apply classical central limit techniques to show that the
following convergence in distribution holds for the collective states ρ⊗n

M/
√

n, λ
:

q j,k(n)
√

n
L

−→ N
(
Re(z j,k), v j,k

)
, 16 j < k 6 d,

p j,k(n)
√

n
L

−→ N
(
Im(z j,k), v j,k

)
, 16 j < k 6 d,

bl(n)
√

n
L

−→ N (ul, λl(1 − λl)) , 16 l 6 d − 1.

The key observation is that the unknown parameters M = (z, u) are recovered as means of the
limit Gaussian distributions. However the limit model is not a classical one due to the fact
that the collective variables do not commute with each other. Therefore we need to take into
account the commutation relations of the limit variables by using the quantum CLT. These
form a general continuous variable system as described in section 2.1, with d2

− 1 coordinates
Z = (Z1, . . . , Zd2−1) = (Q j,k, Pj,k, Bi) having the commutation relations

[Za, Zb] = Tr(ρ0[Oa, Ob]) 1.

By property (ii), this means that (Q j,k, Pj,k) are canonical coordinates of d(d − 1)/2 mutually
commuting one-mode systems, and Bi are classical random variables in the sense that they
commute with each other and with the quantum coordinates (Q j,k, Pj,k). By the CLT the limit
state is the Gaussian 8(M, V) with mean M and covariance matrix V defined in property (iii),
equation (18). In particular, the individual modes (Q j,k, Pj,k, Bi) are independent of each other
and of the classical variables Bi , and the latter have covariance matrix Vcl, cf (18).

We define now the quantum-classical Gaussian statistical model P as

P :=
{
8(M, V) : M ∈ Rd−1

×Cd(d−1)/2
}

(20)

and enunciate the LAN Theorem [19] which is used in establishing the optimality results in
section 4.
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Theorem 3.1. The sequence of qudit models Qn defined in (14) converges to the quantum-
classical Gaussian model P defined in (20), in the sense that there exist ε > 0 and channels

Tn : M(Cd)⊗n
→ T1

(
L2(R)⊗d(d−1)/2

)
⊗ L1(Rd−1),

Sn : T1

(
L2(R)⊗d(d−1)/2

)
⊗ L1(Rd−1) → M(Cd)⊗n,

such that

lim
n→∞

sup
‖M‖6nε

∥∥∥Tn(ρ
⊗n
(M/

√
n,λ)

) − φ(M, V)

∥∥∥
1
= 0,

lim
n→∞

sup
‖M‖6nε

∥∥∥ρ⊗n
(M/

√
n,λ)

− Sn(φ(M, V))

∥∥∥
1
= 0.

(21)

Note that the statement of the above theorem is different from that of the CLT in that
theorem 3.1 shows that the collective state of the ensemble can be transferred by means of
physical quantum channels to a Gaussian state, with vanishing norm-one error uniformly over
the unknown parameters. The CLT is instead a statement about the convergence in law, for a
fixed state and does not have an immediate operational interpretation. In the next section we
will use LAN to transform the qudit reversal problem into a corresponding Gaussian reversal
one, thus exploiting the solution to the latter obtained in section 2.

4. Optimal channel reversal on mixed qudit ensembles

We now focus on the main aim of this paper, that is to find optimal channels

Rn : M(Cd)⊗n
→ M(Cd)⊗m

which reverse (at rate 0 = m/n) the action of the tensor product channel C⊗n acting on n
identically prepared qudits, cf (2) (see figure 1(a)). The performance of channel reversal can
be quantified by a figure of merit, or risk, given by the trace-norm error

∥∥Rn(ρ
⊗n) − ρ⊗m

∥∥
1
. We

adopt a frequentist approach and look to minimize the maximum risk over all input states. We
actually work with a more refined version of the maximum risk known as the local maximum
risk, which was already employed in other quantum statistical problems [8, 17, 18, 39]. For each
state ρ, this is defined by

Rmax(Rn, ρ, 0) := sup
‖τ−ρ‖6n−

1
2 +ε

∥∥Rn(τ
⊗n) − τ⊗m

∥∥
1

and quantifies the worst performance of Rn in a n−
1
2 +ε-neighbourhood of ρ. This restriction

does not amount to making an assumption about the location of the unknown state, since using
a small sample n1−ε

� n of the systems, one can effectively localize the unknown state within a
confidence region of size n−

1
2 +ε . We aim to find an optimal reversing strategy whose asymptotic

risk is equal to the local minimax risk

Rminmax(ρ, 0) := lim sup
n→∞

inf
Rn

Rmax(Rn, ρ, 0) . (22)

The problem of finding the optimal reversing channel is thus reformulated as follows. For
a given state ρ and output rate 0 = m/n, what is the minimax risk Rminmax(ρ, 0) and which
procedure achieves it? We will not solve this problem for all (ρ, 0), but rather we will show
that for each ρ there is an interval [0, 0?] for which the reversal can be performed perfectly
(i.e. with asymptotically vanishing risk Rminmax(ρ, 0) = 0), and we will subsequently identify
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an asymptotically optimal sequence of reversing channels R?
n which achieves the maximum

rate 0?.
As anticipated, the quantum LAN theory [17–20], reviewed in section 3 is the key tool

in solving this problem. For technical reasons related to the validity of LAN, we assume that
the state ρ is not on the boundary of the state space, and is not degenerate so that its spectrum
λ = (λ1, . . . , λd) satisfies λ1 > . . . > λd . A typical random state satisfies these assumptions.
Following equations (13)–(16) we can parametrize the states in the n−1/2+ε neighbourhood of
ρ as ρM/

√
n, λ where M = (z, u) ∈ Cd(d−1)/2

×Rd−1 is a vector of expectations for the matrices
{O1, . . . , Od2−1}. By LAN, the sequence of input quantum statistical models

Qn :=
{
ρ⊗n

(M/
√

n,λ)
: ‖M‖6 nε

}
is asymptotically equivalent in the sense of theorem 3.1, to the sequence of Gaussian models Pn

over a quantum-classical continuous variable system with coordinates Z

Pn := {8(M, V) : ‖M‖6 nε
} ,

where 8(M, V) which is a tensor product between d(d − 1)/2 independent one-mode displaced
thermal equilibrium states 8(z j,k, v j,k) (one for each pair j < k) with mean z j,k and covariance
v j,k (cf equation (18)), and a classical (d − 1)-dimensional Gaussian probability density
N (u, Vcl).

We apply the same procedure to the output state ρ ′ := C(ρ) and denote by

ρM′/
√

n,λ′ := C(ρM/
√

n,λ),

the transformed state belonging to the neighbourhood of C(ρ). The corresponding Gaussian
model with coordinates Z′ is

P ′

n :=
{
8(M′, V′) : ‖M′

‖6 nε
}
,

where V′ depends solely on the spectrum of ρ ′. The displacements of the two Gaussian models
are related by a linear transformation

XT : M 7→ M′,

which describes the local action of C around ρ, and hence depends only on these two objects.
The ensemble transformation C⊗n acts on the localized states as

C⊗n : ρ⊗n
(M/

√
n,λ)

7−→ ρ⊗n
(M′/

√
n,λ′)

. (23)

Since both the input and the output and can be approximated by Gaussian states and the
transformation between the displacements is linear, one can expect that the two Gaussian states
are connected by a Gaussian channel G as depicted in diagram (3). The following theorem states
that this is indeed the case and the proof can be found in appendix A.

Theorem 4.1. There exists a Gaussian channel G such that

G : φ(M, V) 7→ φ(XTM, V′).

The matrices (XG, YG) characterizing G (cf (5)) are XG = X and YG = V′
− XTVX.

New Journal of Physics 14 (2012) 113041 (http://www.njp.org/)

http://www.njp.org/


12

We now move to the problem of finding the optimal reversing channel for multiple qudits.
As illustrated in the right side of the diagram (3), the solution relies on LAN to recast the
problem into the Gaussian one solved in theorem 2.1. We now state the second main result of
this paper, whose proof is in appendix B .

Theorem 4.2. Let ρ ∈ M(Cd) be a full rank state with non-degenerate spectrum, and let
C : M(Cd) → M(Cd) be a quantum channel which is invertible as a linear map. Let (k?, H ?)

be the optimal rate and channel for the Gaussian reversal problem (cf theorem 2.1)

φ(M, V)
G

7−→ φ(XTM, V′)
H

7−→ φ(kM, V) M ∈ Rd−1
×Cd(d−1)/2,

where V, V′, X depend on C and ρ as above.
Then the maximum reversal rate for the qudit ensemble is 0?

= (k?)2 and

R?
n := S0?n ◦ H ?

◦ Tn

is a sequence of optimal reversing channels i.e.

lim sup
n→∞

sup
‖τ−ρ‖16n−

1
2 +ε

∥∥Rn(τ
⊗n) − τ⊗m

∥∥
1
= 0.

This result shows, in full generality, that in order to reverse the action of an arbitrary
channel acting on a large ensemble of n qudits, independent and identically prepared in an
unknown mixed state ρ, the optimal strategy is to take a shortcut through phase space2, optimally
reverse the corresponding Gaussian channel, and then map the output back onto m qudits (with
rate m/n = 0?).

This kind of digital–analogue interconversion might prove handy when it comes to
counteract the effect of noisy channels affecting quantum states of, say, n-atom ensembles:
the best strategy ought to be transferring their state onto light modes (e.g. using quantum non-
demolition interactions [10]), implementing corrective procedures on the obtained Gaussian
beams in phase space (according to the recipe of theorem 2.1), and then mapping the restored
state back onto the atomic storage unit. We will now showcase our results on a specific example.

5. Example: reversal of the phase flip qubit channel

The qubit phase flip channel is defined by C(ρ) =
∑

k EkρE†
k , with E0 =

√
pDiag(1, 1) and

E1 =
√

1 − pDiag(1, −1) [1]. Phase flip is a common source of error in quantum computation
and several algorithms have been developed for its correction [34]. According to theorem 4.2,
an optimal way to reverse the composite action of individual phase flips on a n-qubit register is
to map the state of the qubit register onto a Gaussian state (which in this case comprises a single
quantum mode and one real classical random variable), reverse the corresponding Gaussian
channel (up to a rescaling factor k?), and map the output back onto the qubits.

As described in the previous section we consider states in a neighbourhood of ρ; the latter
has in general the Bloch vector representation

ρ =
1

2

(
1 + rz rx + iry

rx − iry 1 − rz

)
. (24)

2 Shortcuts through higher dimensions are also useful to simplify quantum computing logic, see [40].
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The neighbourhood of ρ is parametrized as in (13) with M = (z, u) ∈ C×R. The action of the
channel C is

C : r = (rx , ry, rz) 7→ r′
= ((2p − 1)rx , (2p − 1)ry, rz).

From this we can compute the covariance matrices

V = Diag

(
1

2‖r‖
,

1

2‖r‖
, 1 − ‖r‖2

)
, V′

= Diag

(
1

2‖r′‖
,

1

2‖r′‖
, 1 − ‖r′

‖
2

)
,

where ‖r′
‖

2
= (2p − 1)2(r 2

x + r 2
y ) + r 2

z . Similarly the matrix XT
G is obtained after computing the

transformation of the local states under C

XT
G =

(2p − 1)
√

‖r‖
‖r′‖

0 0

0 (2p − 1)(
‖r‖
‖r′‖

)
3
2 0

0 −
4(1−p)prxrz

‖r′‖·‖r‖
‖r′

‖

‖r‖

 . (25)

We are interested in evaluating the threshold factor k? as given by (8), which is associated
to the optimal rate m/n = (k?)2 for phase flip reversal on the qubit register. Due to the inherent
symmetry of the channel, we may set ry = 0 without any loss of generality, and assume
1
2 6 p 6 1. Therefore k? will depend on p, rx , rz. The results are summarized as follows.

For p = 1 the channel is trivially the identity, therefore k?
= 1 for any r. For p = 1/2 the

channel is never reversible, and k?
= 0 for any r. In the limit of pure input states of each qubit

(|r| → 1), we find that k?
→ 2p − 1 if rx → 0, and k?

→ 0 otherwise (i.e. the channel is not
reversible for any pure state, if there is a non-zero component on the x-axis). In case rx = 0,
we find k?(p, rx = 0, rz) = 2p − 1, which means that, as intuitively expected, the rate does not
depend on rz. On the other hand, in case rz = 0, we have

k?(p, rx , rz = 0) =

√[
(2p − 1)2(1 − r 2

x )
]
/
[
1 − (−1 + 2p)2r 2

x

]
.

We observe that for small values of rx this tends again to the line 2p − 1; for rx close to 1, k?

is instead a sublinear function of p, as depicted in figure 2, showing that the reversal becomes
inefficient in terms of the number of perfectly retrieved copies. In general, if a non-zero rx is
present as well, the behaviour of k? as a function of p is qualitatively similar to the previous
case, but typically k? increases, at fixed ‖ r ‖ and p, with increasing ratio |rz/rx |. The general
shape of k? as a function of the Bloch vector components interpolates among the various limits
discussed above, and is plotted in figure 3.

6. Conclusions

In this paper we have solved the general problem of optimal channel reversal for an ensemble
of generally mixed independent and identically prepared qudits. This substantially extends our
earlier work [8] on the particular instance of state purification (and dilution) of qubit ensembles.
To accomplish our task, we have employed the versatile statistical tool of LAN [17, 19] to recast
the problem in terms of Gaussian states and channels, then solved the open problem of optimal
reversal of a general Gaussian channel acting on a multimode quantum-classical Gaussian state
with a given covariance.
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Figure 2. Plots of k? as a function of p for different values of ‖r‖. From top to
bottom in both panels: ‖r‖= 0, 0.3, 0.5, 0.8, 0.95, 0.99. In panel (a), rz = 0; in
panel (b), rz = 2rx .

Figure 3. Plot of k? as a function of rx and rz for p = 0.6.

The methods demonstrated in this paper provide powerful strategies for counteracting
undesired noise effects in quantum memories and long-distance quantum communications,
based on interfaces between discrete ensembles and continuous modes [9, 10, 13]. A further
generalization of our work, worth addressing in the future, could be that of considering the
optimal reversal of quantum channels acting on correlated copies of n qudits, possibly requiring
an extension of the LAN theory beyond the paradigm of independent and identically prepared
systems.
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Appendix A. Proof that the Gaussian channel G in the diagram (3) exists

Note that by the LAN construction the coordinates Z and Z′ of the input and output Gaussian
continuous variable systems have the same symplectic matrix �,

[Za, Zb] = Tr(ρ[Oa, Ob])1 = i�a,b1 = Tr
(
ρ[O ′

a, O ′

b]
)
= [Z ′

a, Z ′

b] (A.1)

and the covariance matrices are determined by the states ρ and ρ ′
= C(ρ)

〈Za ∗ Zb〉 = Tr(ρOa ∗ Ob), 〈Z ′

a ∗ Z ′

b〉 = Tr(ρ ′O ′

a ∗ O ′

b). (A.2)

Recall that any Gaussian channel from the input to the output is of the form

G∗ : Wz 7−→ WXG z e−
1
2 zTYG z,

where XG , YG are real matrices of dimension d2
− 1, with YG positive and satisfying the matrix

inequality

YG > i(XT
G�XG − �). (A.3)

Since the means are transformed as M 7→ XT
GM the matrix XG must be equal to X. Moreover

the output variance is

V′
= XTVX + YG,

which determines the second matrix YG = V′
− XTVX. It remains to show that YG

satisfies (A.3) which is equivalent to

V′ + i�> XT(V + i�)X. (A.4)

By using (A.1) and (A.2) the latter can be translated into the following property of C :

Ṽ′ > XTṼX, (A.5)

where Ṽ′

a,b = tr(C(ρ)O ′

a O ′

b) and Ṽa,b = tr(ρOa Ob). Finally, to verify this inequality note that
for all M

Tr
(
ρ(M,λ)XTO

)
= XT

GM = Tr
(
C(ρ(M,λ))O′

)
= tr(ρ(M,λ)C(O′))

which implies O′
= XTO. This result together with the inequality T (A∗ A)> T (A∗)T (A) valid

for any channel T imply (A.5):

c†Ṽ′c =

∑
a,b

c∗

acbTr(C(ρ)O ′

a O ′

b) =

∑
a,b

c∗

acbTr(ρC∗(O ′

a O ′

b))

>
∑
a,b

c∗

acbTr(ρC(O ′

a)C(O ′

b))

= c†XTṼXc. (A.6)

Hence if C is a completely positive map then G is a Gaussian channel.
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Appendix B. Proof of theorem 4.2

We need to show that the reversal of C is possible on the interval [0, 0?] and not possible for
0 > 0?. Beginning with the qudit state

C(ρ(M/
√

n, λ))
⊗n

= ρ⊗n
(M′/

√
n, λ′)

,

where M′
= XT

GM, we apply the LAN channel Tn (cf theorem 3.1) followed by H ? (cf
theorem 2.1) to obtain a state which is asymptotically undistinguishable from the Gaussian
state 8(k?M, V). To this we apply the inverse LAN map Sm = Sk?2n to achieve the corrected
state

Rn

(
ρ⊗n

(M′/
√

n, λ′)

)
= Sm ◦ H ?

◦ Tn ◦ C⊗n
(
ρ(M/

√
n, λ)

)
.

We first show that R?
n is an (asymptotic) reversing channel for ρ⊗n:

Rmax(R?
n, ρ, 0) = sup

‖M‖6nε

∥∥∥ρ⊗m
(M/

√
n,λ)

− R?
n

(
ρ⊗n

(M′/
√

n,λ′)

)∥∥∥
1

6 sup
‖M‖6nε

∥∥∥ρ⊗m
(M/

√
m,λ)

− Sm (φ(k?M, V))

∥∥∥
1

+ sup
‖M‖6nε

∥∥∥Sm (φ(k?M, V)) − Sm ◦ H ?
◦ Tn(ρ

⊗n
(M′,λ′)

)

∥∥∥
1

6 sup
‖M‖6nε

∥∥∥φ(k?M, V) − H ?
◦ Tn

(
ρ⊗n

(M′,λ′)

)∥∥∥
1

+ o(1)

=
∥∥8(k?M, V) − H ?

(
φ(M′, V′)

)∥∥
1

+ o(1) = o(1),

where we have used the contractivity of the trace norm under quantum operations, the properties
of LAN and the fact that H ? is a Gaussian reversing channel for G, cf (7).

We now show that it is impossible to obtain asymptotically exact reversal for 0 > 0?.
Indeed, suppose there exists a sequence of reversing channels R̃n : M(Cd)⊗n

→ M(Cd)⊗0n such
that

limsup
n→∞

sup
‖M‖6nε

∥∥∥R̃n

(
ρ⊗n

(M′,λ′)

)
− ρ⊗m

(kM,λ)

∥∥∥
1
= 0.

We then use LAN again to show that there exists a G-reversing channel Tm ◦ R̃n ◦ Sn with rate
k > k?, which is impossible:∥∥∥Tm ◦ R̃n ◦ Sn

(
φ(M′, V′

)
− φ (kM, V)

∥∥∥
1

6
∥∥∥R̃n

(
ρ⊗n

(M′,λ′)

)
− ρ⊗m

(kM,λ)

∥∥∥
1

+
∥∥S

(
φ(M′, V′)

)
− ρ⊗m

(kM,λ)

∥∥
1

+
∥∥Tm

(
ρ⊗m

(kM,λ)

)
− φ(kM, V)

∥∥
1

= o(1).
�
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