8,621 research outputs found

    The evolution of resistance through costly acquired immunity

    Get PDF
    We examine the evolutionary dynamics of resistance to parasites through acquired immunity. Resistance can be achieved through the innate mechanisms of avoidance of infection and reduced pathogenicity once infected, through recovery from infection and through remaining immune to infection: acquired immunity. We assume that each of these mechanisms is costly to the host and find that the evolutionary dynamics of innate immunity in hosts that also have acquired immunity are quantitatively the same as in hosts that possess only innate immunity. However, compared with resistance through avoidance or recovery, there is less likely to be polymorphism in the length of acquired immunity within populations. Long-lived organisms that can recover at intermediate rates faced with fast-transmitting pathogens that cause intermediate pathogenicity (mortality of infected individuals) are most likely to evolve long-lived acquired immunity. Our work emphasizes that because whether or not acquired immunity is beneficial depends on the characteristics of the disease, organisms may be selected to only develop acquired immunity to some of the diseases that they encounter

    Information based clustering

    Full text link
    In an age of increasingly large data sets, investigators in many different disciplines have turned to clustering as a tool for data analysis and exploration. Existing clustering methods, however, typically depend on several nontrivial assumptions about the structure of data. Here we reformulate the clustering problem from an information theoretic perspective which avoids many of these assumptions. In particular, our formulation obviates the need for defining a cluster "prototype", does not require an a priori similarity metric, is invariant to changes in the representation of the data, and naturally captures non-linear relations. We apply this approach to different domains and find that it consistently produces clusters that are more coherent than those extracted by existing algorithms. Finally, our approach provides a way of clustering based on collective notions of similarity rather than the traditional pairwise measures.Comment: To appear in Proceedings of the National Academy of Sciences USA, 11 pages, 9 figure

    Disempowerment and resistance in the print industry? Reactions to surveillance-capable technology

    Get PDF
    This article offers a critique of recent characterisations of the effects of electronic technologies in the workplace. It presents detailed case study evidence that calls into question a number of common theoretical assumptions about the character of surveillance at work and the responses of employees to it

    A comparison of Wortmann airfoil computer-generated lift and drag polars with flight and wind tunnel results

    Get PDF
    Computations of drag polars for a low-speed Wortmann sailplane airfoil are compared with both wind tunnel and flight test results. Excellent correlation was shown to exist between computations and flight results except when separated flow regimes were encountered. Smoothness of the input coordinates to the PROFILE computer program was found to be essential to obtain accurate comparisons of drag polars or transition location to either the flight or wind tunnel flight results

    A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy

    Get PDF
    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location

    Two-Host, Two-Vector Basic Reproduction Ratio (R-0) for Bluetongue

    Get PDF
    Mathematical formulations for the basic reproduction ratio (R (0)) exist for several vector-borne diseases. Generally, these are based on models of one-host, one-vector systems or two-host, one-vector systems. For many vector borne diseases, however, two or more vector species often co-occur and, therefore, there is a need for more complex formulations. Here we derive a two-host, two-vector formulation for the R (0) of bluetongue, a vector-borne infection of ruminants that can have serious economic consequences; since 1998 for example, it has led to the deaths of well over 1 million sheep in Europe alone. We illustrate our results by considering the situation in South Africa, where there are two major hosts (sheep, cattle) and two vector species with differing ecologies and competencies as vectors, for which good data exist. We investigate the effects on R (0) of differences in vector abundance, vector competence and vector host preference between vector species. Our results indicate that R (0) can be underestimated if we assume that there is only one vector transmitting the infection (when there are in fact two or more) and/or vector host preferences are overlooked (unless the preferred host is less beneficial or more abundant). The two-host, one-vector formula provides a good approximation when the level of cross-infection between vector species is very small. As this approaches the level of intraspecies infection, a combination of the two-host, one-vector R (0) for each vector species becomes a better estimate. Otherwise, particularly when the level of cross-infection is high, the two-host, two-vector formula is required for accurate estimation of R (0). Our results are equally relevant to Europe, where at least two vector species, which co-occur in parts of the south, have been implicated in the recent epizootic of bluetongue

    Modelling bluetongue virus transmission between farms using animal and vector movements.

    Get PDF
    Bluetongue is a notifiable disease of ruminants which, in 2007, occurred for the first time in England. We present the first model for bluetongue that explicitly incorporates farm to farm movements of the two main hosts, as well as vector dispersal. The model also includes a seasonal vector to host ratio and dynamic restriction zones that evolve as infection is detected. Batch movements of sheep were included by modelling degree of mixing at markets. We investigate the transmission of bluetongue virus between farms in eastern England (the focus of the outbreak). Results indicate that most parameters affecting outbreak size relate to vectors and that the infection generally cannot be maintained without between-herd vector transmission. Movement restrictions are effective at reducing outbreak size, and a targeted approach would be as effective as a total movement ban. The model framework is flexible and can be adapted to other vector-borne diseases of livestock

    Challenges of Using Stereoscopic Displays in a Touch Interaction Context

    Get PDF
    This work examines how common use scenarios for touch interactive stereoscopic displays might exacerbate visual fatigue. We identify technological constraints of current stereoscopic displays and image separation techniques as the potential underlying cause and generate a set of hypotheses concerning the implications for end users. Furthermore we outline a proposed study to examine these hypotheses

    Late Light Curves of Normal Type Ia Supernovae

    Get PDF
    We present late-epoch optical photometry (BVRI) of seven normal/super-luminous Type Ia supernovae: SN 2000E, SN 2000ce, SN 2000cx, SN 2001C, SN 2001V, SN 2001bg, SN 2001dp. The photometry of these objects was obtained using a template subtraction method to eliminate galaxy light contamination during aperture photometry. We show the optical light curves of these supernovae out to epochs of up to ~640 days after the explosion of the supernova. We show a linear decline in these data during the epoch of 200-500 days after explosion with the decline rate in the B,V,& R bands equal to about 1.4 mag/100 days, but the decline rate of the I-band is much shallower at 0.94 mag/100 days.Comment: 33 pages, 11 figures, Accepted for publication in The Astronomical Journa
    corecore