204 research outputs found

    The dynamics of z = 0.8 Hα-selected star-forming galaxies from KMOS/CF-HiZELS

    Get PDF
    We present the spatially resolved Hα dynamics of 16 star-forming galaxies at z ~ 0.81 using the new KMOS multi-object integral field spectrograph on the ESO Very Large Telescope. These galaxies, selected using 1.18 μm narrowband imaging from the 10 deg2 CFHT-HiZELS survey of the SA 22 hr field, are found in a ~4 Mpc overdensity of Hα emitters and likely reside in a group/intermediate environment, but not a cluster. We confirm and identify a rich group of star-forming galaxies at z = 0.813 ± 0.003, with 13 galaxies within 1000 km s–1 of each other, and seven within a diameter of 3 Mpc. All of our galaxies are "typical" star-forming galaxies at their redshift, 0.8 ± 0.4 SFRz=0.8^*_{z = 0.8}, spanning a range of specific star formation rates (sSFRs) of 0.2-1.1 Gyr–1 and have a median metallicity very close to solar of 12 + log(O/H) = 8.62 ± 0.06. We measure the spatially resolved Hα dynamics of the galaxies in our sample and show that 13 out of 16 galaxies can be described by rotating disks and use the data to derive inclination corrected rotation speeds of 50-275 km s–1. The fraction of disks within our sample is 75% ± 8%, consistent with previous results based on Hubble Space Telescope morphologies of Hα-selected galaxies at z ~ 1 and confirming that disks dominate the SFR density at z ~ 1. Our Hα galaxies are well fitted by the z ~ 1-2 Tully-Fisher (TF) relation, confirming the evolution seen in the zero point. Apart from having, on average, higher stellar masses and lower sSFRs, our group galaxies at z = 0.81 present the same mass-metallicity and TF relation as z ~ 1 field galaxies and are all disk galaxies

    A relationship between specific star formation rate and metallicity gradient within z ∼ 1 galaxies from KMOS-HiZELS

    Get PDF
    We have observed a sample of typical z ∼ 1 star-forming galaxies, selected from the HiZELS survey, with the new K-band Multi-Object Spectrograph (KMOS) near-infrared, multi-integral field unit instrument on the Very Large Telescope (VLT), in order to obtain their dynamics and metallicity gradients. The majority of our galaxies have a metallicity gradient consistent with being flat or negative (i.e. higher metallicity cores than outskirts). Intriguingly, we find a trend between metallicity gradient and specific star formation rate (sSFR), such that galaxies with a high sSFR tend to have relatively metal poor centres, a result which is strengthened when combined with data sets from the literature. This result appears to explain the discrepancies reported between different high-redshift studies and varying claims for evolution. From a galaxy evolution perspective, the trend we see would mean that a galaxy's sSFR is governed by the amount of metal-poor gas that can be funnelled into its core, triggered either by merging or through efficient accretion. In fact, merging may play a significant role as it is the starburst galaxies at all epochs, which have the more positive metallicity gradients. Our results may help to explain the origin of the fundamental metallicity relation, in which galaxies at a fixed mass are observed to have lower metallicities at higher star formation rates, especially if the metallicity is measured in an aperture encompassing only the central regions of the galaxy. Finally, we note that this study demonstrates the power of KMOS as an efficient instrument for large-scale resolved galaxy surveys

    The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully–Fisher relation at z ∼ 1

    Get PDF
    We present the stellar mass (M*), and K-corrected K-band absolute magnitude (MK) Tully–Fisher relations (TFRs) for subsamples of the 584 galaxies spatially resolved in H α emission by the KMOS Redshift One Spectroscopic Survey (KROSS). We model the velocity field of each of the KROSS galaxies and extract a rotation velocity, V80 at a radius equal to the major axis of an ellipse containing 80 per cent of the total integrated H α flux. The large sample size of KROSS allowed us to select 210 galaxies with well-measured rotation speeds. We extract from this sample a further 56 galaxies that are rotationally supported, using the stringent criterion V80/σ > 3, where σ is the flux weighted average velocity dispersion. We find the MK and M* TFRs for this subsample to be MK/mag=(−7.3±0.9)×[(log(V80/km s−1)−2.25]−23.4±0.2MK/mag=(−7.3±0.9)×[(log⁡(V80/km s−1)−2.25]−23.4±0.2, and log(M∗/M⊙)=(4.7±0.4)×[(log(V80/km s−1)−2.25]+10.0±0.3log⁡(M∗/M⊙)=(4.7±0.4)×[(log⁡(V80/km s−1)−2.25]+10.0±0.3, respectively. We find an evolution of the M* TFR zero-point of −0.41 ± 0.08 dex over the last ∼8 billion years. However, we measure no evolution in the MK TFR zero-point over the same period. We conclude that rotationally supported galaxies of a given dynamical mass had less stellar mass at z ∼ 1 than the present day, yet emitted the same amounts of K-band light. The ability of KROSS to differentiate, using integral field spectroscopy with KMOS, between those galaxies that are rotationally supported and those that are not explains why our findings are at odds with previous studies without the same capabilities

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    Atmospheric composition and thermodynamic retrievals from the ARIES airborne TIR-FTS system--Part 2: Validation and results from aircraft campaigns

    Get PDF
    This study validates trace gas and thermodynamic retrievals from nadir infrared spectroscopic measurements recorded by the UK Met Office Airborne Research Interferometer Evaluation System (ARIES) – a thermal infrared, Fourier transform spectrometer (TIR-FTS) on the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft.Trace-gas-concentration and thermodynamic profiles have been retrieved and validated for this study throughout the troposphere and planetary boundary layer (PBL) over a range of environmental variability using data from aircraft campaigns over and around London, the US Gulf Coast, and the Arctic Circle during the Clear air for London (ClearfLo), Joint Airborne IASI (Infrared Atmospheric Sounding Interferometer) Validation Experiment (JAIVEx), and Measurements, process studies, and Modelling (MAMM) aircraft campaigns, respectively. Vertically resolved retrievals of temperature and water vapour (H2O), and partial-column retrievals of methane (CH4), carbon monoxide (CO), and ozone (O3) (over both land and sea) were compared to corresponding measurements from high-precision in situ analysers and dropsondes operated on the FAAM aircraft. Average degrees of freedom for signal (DOFS) over a 0–9 km column range were found to be 4.97, 3.11, 0.91, 1.10, and 1.62 for temperature, H2O, CH4, CO, and O3, respectively, when retrieved on 10 vertical levels. Partial-column mean biases (and bias standard error) between the surface and ~ 9 km, when averaged across all flight campaigns, were found to be −0.7(±0.3) K, −479(±56) ppm, −11(±2) ppb, −3.3(±1.0) ppb, and +3.5(±1.0) ppb, respectively, whilst the typical a posteriori (total) uncertainties for individually retrieved profiles were 0.4, 9.5, 5.0, 21.2, and 15.0 %, respectively.Averaging kernels (AKs) derived for progressively lower altitudes show improving sensitivity to lower atmospheric layers when flying at lower altitudes. Temperature and H2O display significant vertically resolved sensitivity throughout the column, whilst trace gases are usefully retrieved only as partial-column quantities, with maximal sensitivity for trace gases other than H2O within a layer 1 and 2 km below the aircraft. This study demonstrates the valuable atmospheric composition information content that can be obtained by ARIES nadir TIR remote sensing for atmospheric process studies

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    On the spin distributions of Λ\LambdaCDM haloes

    Full text link
    We used merger trees realizations, predicted by the extended Press-Schechter theory, in order to study the growth of angular momentum of dark matter haloes. Our results showed that: 1) The spin parameter λ\lambda' resulting from the above method, is an increasing function of the present day mass of the halo. The mean value of λ\lambda' varies from 0.0343 to 0.0484 for haloes with present day masses in the range of 109h1M 10^9\mathrm{h}^{-1}M_{\odot} to 1014h1M10^{14}\mathrm{h}^{-1}M_{\odot}. 2)The distribution of λ\lambda' is close to a log-normal, but, as it is already found in the results of N-body simulations, the match is not satisfactory at the tails of the distribution. A new analytical formula that approximates the results much more satisfactorily is presented. 3) The distribution of the values of λ\lambda' depends only weakly on the redshift. 4) The spin parameter of an halo depends on the number of recent major mergers. Specifically the spin parameter is an increasing function of this number.Comment: 10 pages, 8 figure
    corecore