366 research outputs found

    Cationic Amino Acid Uptake Constitutes a Metabolic Regulation Mechanism and Occurs in the Flagellar Pocket of Trypanosoma cruzi

    Get PDF
    Trypanosomatids' amino acid permeases are key proteins in parasite metabolism since they participate in the adaptation of parasites to different environments. Here, we report that TcAAP3, a member of a Trypanosoma cruzi multigene family of permeases, is a bona fide arginine transporter. Most higher eukaryotic cells incorporate cationic amino acids through a single transporter. In contrast, T. cruzi can recognize and transport cationic amino acids by mono-specific permeases since a 100-fold molar excess of lysine could not affect the arginine transport in parasites that over-express the arginine permease (TcAAP3 epimastigotes). In order to test if the permease activity regulates downstream processes of the arginine metabolism, the expression of the single T. cruzi enzyme that uses arginine as substrate, arginine kinase, was evaluated in TcAAP3 epimastigotes. In this parasite model, intracellular arginine concentration increases 4-folds and ATP level remains constant until cultures reach the stationary phase of growth, with decreases of about 6-folds in respect to the controls. Interestingly, Western Blot analysis demonstrated that arginine kinase is significantly down-regulated during the stationary phase of growth in TcAAP3 epimastigotes. This decrease could represent a compensatory mechanism for the increase in ATP consumption as a consequence of the displacement of the reaction equilibrium of arginine kinase, when the intracellular arginine concentration augments and the glucose from the medium is exhausted. Using immunofluorescence techniques we also determined that TcAAP3 and the specific lysine transporter TcAAP7 co-localize in a specialized region of the plasma membrane named flagellar pocket, staining a single locus close to the flagellar pocket collar. Taken together these data suggest that arginine transport is closely related to arginine metabolism and cell energy balance. The clinical relevance of studying trypanosomatids' permeases relies on the possibility of using these molecules as a route of entry of therapeutic drugs

    Prevalence and Predictors of Urinary Tract Infection and Severe Malaria Among Febrile Children Attending Makongoro Health Centre in Mwanza City, North-Western Tanzania.

    Get PDF
    In malaria endemic areas, fever has been used as an entry point for presumptive treatment of malaria. At present, the decrease in malaria transmission in Africa implies an increase in febrile illnesses related to other causes among underfives. Moreover, it is estimated that more than half of the children presenting with fever to public clinics in Africa do not have a malaria infection. Thus, for a better management of all febrile illnesses among under-fives, it becomes relevant to understand the underlying aetiology of the illness. The present study was conducted to determine the relative prevalence and predictors of P. falciparum malaria, urinary tract infections and bacteremia among under-fives presenting with a febrile illness at the Makongoro Primary Health Centre, North-Western Tanzania. From February to June 2011, a cross-sectional analytical survey was conducted among febrile children less than five years of age. Demographic and clinical data were collected using a standardized pre-tested questionnaire. Blood and urine culture was done, followed by the identification of isolates using in-house biochemical methods. Susceptibility patterns to commonly used antibiotics were investigated using the disc diffusion method. Giemsa stained thin and thick blood smears were examined for any malaria parasites stages. A total of 231 febrile under-fives were enrolled in the study. Of all the children, 20.3% (47/231, 95%CI, 15.10-25.48), 9.5% (22/231, 95%CI, 5.72-13.28) and 7.4% (17/231, 95%CI, 4.00-10.8) had urinary tract infections, P. falciparum malaria and bacteremia respectively. In general, 11.5% (10/87, 95%CI, 8.10-14.90) of the children had two infections and only one child had all three infections. Predictors of urinary tract infections (UTI) were dysuria (OR = 12.51, 95% CI, 4.28-36.57, P < 0.001) and body temperature (40-41 C) (OR = 12.54, 95% CI, 4.28-36.73, P < 0.001). Predictors of P. falciparum severe malaria were pallor (OR = 4.66 95%CI, 1.21-17.8, P = 0.025) and convulsion (OR = 102, 95% CI, 10-996, P = 0.001). Escherichia coli were the common gram negative isolates from urine (72.3%, 95% CI, 66.50-78.10) and blood (40%, 95%CI, and 33.70-46.30). Escherichia coli from urine were 100% resistant to ampicillin, 97% resistant to co-trimoxazole, 85% resistant to augmentin and 32.4% resistant to gentamicin; and they were 100%, 91.2% and 73.5% sensitive to meropenem, ciprofloxacin and ceftriaxone respectively. Urinary tract infection caused by multi drug resistant Escherichia coli was the common cause of febrile illness in our setting. Improvement of malaria diagnosis and its differential diagnosis from other causes of febrile illnesses may provide effective management of febrile illnesses among children in Tanzania

    Models of Star-Planet Magnetic Interaction

    Full text link
    Magnetic interactions between a planet and its environment are known to lead to phenomena such as aurorae and shocks in the solar system. The large number of close-in exoplanets that were discovered triggered a renewed interest in magnetic interactions in star-planet systems. Multiple other magnetic effects were then unveiled, such as planet inflation or heating, planet migration, planetary material escape, and even modification of the host star properties. We review here the recent efforts in modelling and understanding magnetic interactions between stars and planets in the context of compact systems. We first provide simple estimates of the effects of magnetic interactions and then detail analytical and numerical models for different representative scenarii. We finally lay out a series of future developments that are needed today to better understand and constrain these fascinating interactions.Comment: 23 pages, 10 figures, accepted as a chapter in the Handbook of Exoplanet

    Condition-Dependent Cell Volume and Concentration of Escherichia coli to Facilitate Data Conversion for Systems Biology Modeling

    Get PDF
    Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or cellular copy numbers, the total cell volume and number of cells in a sample need to be known. Unfortunately, even for the often studied model bacterium Escherichia coli this information is hardly available and furthermore, certain measures (e.g. cell volume) are also dependent on the growth condition. In this work, we have determined these basic data for E. coli cells when grown in 22 different conditions so that respective data conversions can be done correctly. First, we determine growth-rate dependent cell volumes. Second, we show that in a 1 ml E. coli sample at an optical density (600 nm) of 1 the total cell volume is around 3.6 µl for all conditions tested. Third, we demonstrate that the cell number in a sample can be determined on the basis of the sample's optical density and the cells' growth rate. The data presented will allow for conversion of E. coli measurement data normalized to optical density into volumetric cellular concentrations and copy numbers per cell - two important parameters for systems biology model development

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar

    Get PDF
    We study the process e+e−→J/ψπ+π−e^+e^-\to J/\psi\pi^{+}\pi^{-} with initial-state-radiation events produced at the PEP-II asymmetric-energy collider. The data were recorded with the BaBar detector at center-of-mass energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454 fb−1\mathrm{fb^{-1}}. We investigate the J/ψπ+π−J/\psi \pi^{+}\pi^{-} mass distribution in the region from 3.5 to 5.5 GeV/c2\mathrm{GeV/c^{2}}. Below 3.7 GeV/c2\mathrm{GeV/c^{2}} the ψ(2S)\psi(2S) signal dominates, and above 4 GeV/c2\mathrm{GeV/c^{2}} there is a significant peak due to the Y(4260). A fit to the data in the range 3.74 -- 5.50 GeV/c2\mathrm{GeV/c^{2}} yields a mass value 4244±54244 \pm 5 (stat) ±4 \pm 4 (syst)MeV/c2\mathrm{MeV/c^{2}} and a width value 114−15+16114 ^{+16}_{-15} (stat)±7 \pm 7(syst)MeV\mathrm{MeV} for this state. We do not confirm the report from the Belle collaboration of a broad structure at 4.01 GeV/c2\mathrm{GeV/c^{2}}. In addition, we investigate the π+π−\pi^{+}\pi^{-} system which results from Y(4260) decay

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    The role of a probiotics mixture in the treatment of childhood constipation: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inconsistent data exist about the efficacy of probiotics in the treatment of constipation. Several studies in adults with constipation showed positive effects of probiotics on constipation. Inconsistent data exist regarding the effect of a single probiotic strain in constipated children. The aim of this pilot study was to determine the effect of a mixture of probiotics containing bifidobacteria and lactobacilli in the treatment of childhood constipation.</p> <p>Methods</p> <p>Children aged 4–16 years with constipation as defined by the Rome III criteria were eligible for the study. During a 4 week period, children received a daily mix of 4 × 10<sup>9 </sup>colony forming units of a probiotic mixture (<it>Ecologic</it><sup>®</sup><it>Relief</it>) containing Bifidobacteria (B.) bifidum, B. infantis, B. longum, Lactobacilli (L.) casei, L. plantarum and L. rhamnosus. Primary outcome measures were frequency of bowel movements (BMs) per week and stool consistency. Secondary outcome measures were number of faecal incontinence episodes per week, abdominal pain and side effects.</p> <p>Results</p> <p>Twenty children, 50% male, median age 8 (range 4–16) were included.</p> <p>The frequency of BMs per week increased from 2.0 (1.0–5.0) to 4.2 (0.0–16.0) in week 2 (p = 0.10) and 3.8 (2.1–7.0) in week 4 (p = 0.13). In 12 children presenting with <3 BMs/week, BMs per week increased significantly from 1.0 (0.0–2.0) to 3.0 (0.0–7.0) in week 2 (p = 0.01) and 3.0 (0.0–10.0) in week 4 (p = 0.01). The stool consistency was reported as hard in 7 children at baseline, in 4 children at week 2 (p = 0.23) and in 6 children after 4 weeks of treatment (p = 1.00). A significant decrease in number of faecal incontinence episodes per week was found in the entire group: 4.0 (0.0–35.0) to 1.5 (0.0–14.0) in week 2 (p = 0.01) and 0.3 (0.0–7.0) in week 4 (p = 0.001). The presence of abdominal pain decreased significantly from 45% to 25% in week 2 (p = 0.04) and 20% at week 4 (p = 0.006). No side effects were reported.</p> <p>Conclusion</p> <p>This pilot study shows that a mixture of probiotics, has positive effects on symptoms of constipation. To confirm these findings, a large randomised placebo controlled trial is required.</p

    Structural basis of subtype-selective competitive antagonism for GluN2C/2D-containing NMDA receptors.

    Get PDF
    N-Methyl-D-aspartate receptors (NMDARs) play critical roles in the central nervous system. Their heterotetrameric composition generates subtypes with distinct functional properties and spatio-temporal distribution in the brain, raising the possibility for subtype-specific targeting by pharmacological means for treatment of neurological diseases. While specific compounds for GluN2A and GluN2B-containing NMDARs are well established, those that target GluN2C and GluN2D are currently underdeveloped with low potency and uncharacterized binding modes. Here, using electrophysiology and X-ray crystallography, we show that UBP791 ((2S*,3R*)-1-(7-(2-carboxyethyl)phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid) inhibits GluN2C/2D with 40-fold selectivity over GluN2A-containing receptors, and that a methionine and a lysine residue in the ligand binding pocket (GluN2D-Met763/Lys766, GluN2C-Met736/Lys739) are the critical molecular elements for the subtype-specific binding. These findings led to development of UBP1700 ((2S*,3R*)-1-(7-(2-carboxyvinyl)phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid) which shows over 50-fold GluN2C/2D-selectivity over GluN2A with potencies in the low nanomolar range. Our study shows that the L-glutamate binding site can be targeted for GluN2C/2D-specific inhibition
    • …
    corecore