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Structural basis of subtype-selective competitive
antagonism for GIuN2C/2D-containing
NMDA receptors
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N-Methyl-D-aspartate receptors (NMDARSs) play critical roles in the central nervous system.
Their heterotetrameric composition generates subtypes with distinct functional properties
and spatio-temporal distribution in the brain, raising the possibility for subtype-specific tar-
geting by pharmacological means for treatment of neurological diseases. While specific
compounds for GIUN2A and GIuN2B-containing NMDARs are well established, those that
target GIUN2C and GIuN2D are currently underdeveloped with low potency and unchar-
acterized binding modes. Here, using electrophysiology and X-ray crystallography, we show
that  UBP791  ((25*3R*)-1-(7-(2-carboxyethyl)phenanthrene-2-carbonyl)piperazine-2,3-
dicarboxylic acid) inhibits GIUN2C/2D with 40-fold selectivity over GIuN2A-containing
receptors, and that a methionine and a lysine residue in the ligand binding pocket (GIuN2D-
Met763/Lys766, GIuN2C-Met736/Lys739) are the critical molecular elements for the
subtype-specific binding. These findings led to development of UBP1700 ((25*,3R*)-1-(7-(2-
carboxyvinyl)phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid) which shows over
50-fold GIuN2C/2D-selectivity over GIuUN2A with potencies in the low nanomolar range.
Our study shows that the L-glutamate binding site can be targeted for GIuN2C/2D-specific
inhibition.
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-Methyl-D-aspartate receptors (NMDARs) belong to the

ionotropic glutamate receptor (iGluR) family and are

ligand-gated ion channels that mediate the majority of
excitatory synaptic transmission in the central nervous system.
NMDARs play critical roles in brain development and functions
such as learning and memory and have been implicated in an
array of neurological diseases and disorders, including depression,
stroke, seizure, schizophrenia, Alzheimer’s disease and Parkin-
son’s diseasel2. Their roles have been most extensively studied as
part of the postsynaptic density where NMDARs co-localize with
non-NMDAR iGluRs including a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs) along with many
other postsynaptic density proteins. Recent evidence, however,
demonstrates that presynaptic and extrasynaptic NMDARs play
important regulatory roles in neuronal signaling and diseases*.
It has been well known that overactivation of NMDARs is asso-
ciated with neuronal cell death caused by stroke, traumatic brain
injury, and neurodegenerative diseases®’, thus leading the field
to pursue means to alleviate NMDAR activities. A number of
NMDAR inhibitors have been in clinical trials in the past two
decades, including the open channel blocker memantine, which
has been approved by the FDA to treat Alzheimer’s disease.

NMDARs function as heterotetramers composed of GluN1
subunits (with eight splice variants la-4a, 1b-4b) and GluN2A/
2B/2C/2D and/or GluN3A/3B subunits. GluN1 and GluN3 sub-
units bind glycine (Gly), whereas GluN2 subunits bind L-gluta-
mate. Hence, GluN1/GluN2 NMDAR activation requires binding
of both Gly and r-glutamate, whereas GluN1/GluN3 NMDAR
activation requires only Gly. Each receptor subunit has a modular
build with an amino-terminal domain (ATD), a ligand-binding
domain (LBD), a transmembrane domain (TMD), and a
carboxyl-terminal domain (CTD) (Fig. 1a, b). The crystal struc-
tures of the intact NMDAR structures®!0 showed that the sub-
units assemble as a dimer of GluN1-GIuN2 heterodimers with a
swap of heterodimer partners from the ATD to the LBD layer
(Fig. 1a). Importantly, previously obtained structures of isolated
ATDs and LBDs!!-13 are identical to the ones observed in the
intact NMDARs?1? demonstrating the physiological relevance of
conducting structural biology on the isolated extracellular
domains. All ATDs and LBDs have distinct bilobed clamshell-like
architectures. In the case of LBDs, agonists (e.g. Gly and r-glu-
tamate) or competitive antagonists (e.g. 5,7-dichlorokynurenic
acid and 2-amino-5-phosphonopentanoic acid) bind to the cleft
between the two lobes.

Subunit diversity is a hallmark of the NMDAR family and can
be potentially exploited to target specific diseases. Different
combinations of GluN1-3 subunits give rise to specific di- and
tri-heteromeric NMDAR subtypes with a wide spectrum of
electrophysiological and pharmacological properties. Extensive
research has shown distinct spatio-temporal distribution of
NMDAR subtypes in the brain!4-17 implying unique roles of
different NMDAR subtypes in specific aspects of brain develop-
ment and functions, and suggesting therapeutic potential for
subtype-specific targeting of NMDARs. Thus, development of
highly subtype-specific reagents will advance our understanding
of the biological roles of NMDAR subtypes in brain functions and
development, and may provide possible treatments for the
aforementioned diseases and disorders. While GluN2A/2B-con-
taining NMDARs are dominant subtypes that are expressed in the
adult brain, the expression of GluN2C/2D-containing NMDARs
is restricted to discrete regions critical for diseases. For example,
in schizophrenia, recent evidence has pointed to critical invol-
vement of NMDAR hypofunction in cortical GABAergic
neurons!$1° where GluN2D subunits are highly expressed?%2. In
Parkinson’s disease where over-firing of subthalamic nucleus
(STN) neurons occurs due to the loss of dopaminergic neurons in

the substantia nigra pars compacta, GluN2D-containing
NMDARs may be the relevant target since they are present and
mediate synaptic neurotransmission in the STN22.

One of the key limitations in studying GluN2C- and GluN2D-
containing NMDARs in both pre- and postsynaptic processes has
been the lack of highly potent and subtype-specific agonists and
antagonists. This is in stark contrast to the GluN2B- and GluN2A-
containing NMDARs where highly subtype-specific compounds,
ifenprodil*> and TCN-20124-26, respectively, are available. Still,
compounds with twofold to tenfold GluN2C and GluN2D-
selectivity over GIuN2A/2B, such as PPDA ((25*3R)-1-
(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid) and
its derivatives UBP141 ((2R*,3S*)-1-(phenanthrene-3-carbonyl)
piperazine-2,3-dicarboxylic acid) and UBP145 ((2R*,35*)-1-(9-bro-
mophenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid)?”-2°
were frequently used to show that presynaptic GluN2D-containing
receptors contribute to the major component of short-term poten-
tiation®? and spike timing-dependent long-term depression®!, and
mediate synaptic currents in the juvenile hippocampus?’. While
there has been much improvement in more GluN2C and/or
GluN2D-specific compounds in recent years’?36, all of these
allosteric compounds have shown ICs, values in the high nano-
molar to micromolar range and still lack well-defined binding sites
on the NMDAR, limiting the ability for rational compound opti-
mization. In contrast, the first reported GluN2C/2D-specific com-
pound with well-defined binding mode at the GluN2 LBD cleft was
the competitive antagonist PPDA, with K; values in the sub-
micromolar range but with only twofold to sixfold GluN2C/2D-
selectivity over GluN2A/2B?’. Screening efforts led to the discovery
of those similar compounds, UBP141 and UBP145, with up to
approximately tenfold GIluN2C/2D selectivity28.

In this study, we present a PPDA-derivative UBP791 (25*,3R*)-
(1-(7-(2-carboxyethyl)phenanthrene-2-carbonyl)piperazine-2,3-
dicarboxylic acid) which showed 47-fold and 16-fold
preference of GluN2C/2D- over GIuN2A- and GIuN2B-
containing NMDARs, respectively, and use UBP791 to study
the key molecular determinants within GluN2D that confer
GluN2C/GluN2D-selective compound binding. Through X-ray
crystallography and electrophysiology, we determined that a
combination of a methionine and a lysine unique to GluN2C/2D
(rat GluN2D-Met763/Lys766, GluN2C-Met736/Lys739) confers
subtype-selective binding of UBP791. Rationally modifying
UBP791 then led to a greatly improved compound, UBP1700
((28*,3R*)-1-(7-(2-carboxyvinyl)phenanthrene-2-carbonyl) piper-
azine-2,3-dicarboxylic acid), which had 63-fold and 52-fold
selectivity for GIuN2D (50- and 40-fold for GIuN2C) over
GluN2A and GIuN2B, and still showed high potency with K;
values in the low nanomolar range. Hence, our study demon-
strates that despite high conservation of the GluN2 LBDs
(with sequence identities of 69-82% in rat LBDs) particularly at
the L-glutamate-binding pocket, understanding the exact binding
mode of a compound like UBP791 allows exploration of the LBD
as a potential subtype-specific target.

Results

UBP791 shows improved GluN2C/2D-selectivity over GIuN2A/
2B. Our compound, UBP791, is a competitive antagonist derived
from PPDA that has 2.5 to 6-fold GluN2C/2D-selectivity over
GIluN2A and GIuN2B (Fig. 1c)?’. The chemical definition of
UBP791 used in this study is a cis-racemic mixture of (25,3R)-
and (2R,3S)-isomers. To verify GluN2C/2D-selectivity over
GluN2A/2B of UBP791, we first determined potencies of ion
channel inhibition using two-electrode voltage clamp (TEVC)
electrophysiology on Xenopus laevis oocytes injected with cRNA
encoding various GluN2 subunits in combination with GluN1-4a
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Fig. 1 NMDAR domain organization and ligands. a GIuN1/GIuN2 form tetrameric receptors with two GIuNT1 (dark gray) and two GIuN2 (light gray)
subunits. Each subunit has an ATD, LBD, TMD, and CTD domain (CTD not included). The LBD layer contains a dimer of GIuN1-GIuN2 heterodimers, one of
which is highlighted by a surrounding red dashed line. The GIuNT upper lobe (D1) and lower lobe (D2) are colored in green and orange, and the GIuN2 D1
and D2 in purple and magenta. The surface presentation is produced from the PDB structure 4PE5. b Schematic representation of GIuNT and

GIuN2 subunits. Glycine, L-glutamate, and competitive antagonists bind in the LBD clefts. The modular build of the subunits allows isolation of the GIuN1
and GIuN2A LBDs by replacing the M1-M3 transmembrane sequence with a Gly-Thr dipeptide linker. Color coding as in (a). ¢ Chemical structures of
GIuN2 agonists L-glutamate and homoquinolinic acid and antagonists PPDA and UBP791 at pH ~7. PPDA and UBP791 are cis-racemic mixtures of (2S,3R)-

and (2R,3S)-isomers.

(hence GluN1/GluN2 NMDARs). Towards this end, we estimated
ICso values by measuring macroscopic currents at fixed Gly and
L-glutamate concentrations and varying UBP791 concentrations
(Fig. 2a, b). We also estimated ECs, values of L-glutamate by
measuring macroscopic currents at a fixed Gly concentration
(100 uM) and varying 1-glutamate concentrations (Fig. 2c).
Inhibition potencies are defined as K; values, which are derived
from the Cheng-Prusoff equation®” that considers ECsq, ICso,
and the L-glutamate concentration used in the experiments. The
K; values for the GluN1/GluN2C and GluN1/GluN2D NMDARs
were 80-90 nM, which were about 16- to 17-fold and 47- to
50-fold lower than those for the GluN1/GluN2B and the GluN1/
GluN2A NMDARSs, respectively (Fig. 2d). Thus, UBP791 repre-
sents a substantial improvement from PPDA27,

Key elements for subtype-specific agonist/antagonist binding.
Our previous structure of the GluN1-GluN2A LBD complexed to
PPDA unambiguously mapped the antagonist-binding site at the
cleft of the bilobe architecture of the GluN2 LBD (PDB: 4NF6).
Given the structural similarity between PPDA and UBP791, we
hypothesized that the binding mode of UBP791 is similar to that
of PPDA and that the molecular determinants for GluN2C/2D-
selective binding of UBP791 likely reside within the ligand-
binding pocket. In this study, we focus on the comparison
between the GluN2A and GluN2D subunits, since sequence and
functional similarities between GIuN2A and GIluN2B and
between GluN2C and GluN2D are high. Near the PPDA-binding
pocket in the GIuN2A LBD (Fig. 3a), the primary sequences
across the GIuN2A-D subunits are mostly identical except for
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Fig. 2 UBP791 binds preferentially to GluN2C/2D-containing NMDARs over GluN2A/2B-containing NMDARSs. a Representative TEVC dose-response
traces of GIuN1-4a/GIuN2D (left panel) or GluN1-4a/GIuN2A (right panel) NMDARs held at —60 mV. Currents were evoked by application of 100 uM
glycine and 1 or 3 pM L-glutamate and inhibited by varying concentrations of UBP791 (threefold increments to max. 20 and 360 pM as shown). b Averaged
dose-response curves (mean = s.d.) for inhibition with UBP791 from ten GluN1-4a/GIuN2D and 15 GluN1-4a/GIluN2A recordings fit with the Hill equation
to calculate 1Csq and Hill coefficient (ny). € ECsq values for GIuN1-4a/GIuN2 (a-d) obtained from L-glutamate dose-response curves. d Inhibition potency
(K;) values calculated using the Cheng-Prusoff equation with the determined EC5o and ICsq values. Single data points are shown as open circles, the bar
graph represents the mean with error bars for s.d., the number of recordings (n) and the fold difference to the K; of GIuUN2D are as shown. Pairwise
comparison shows subtypes have different potencies (p < 0.05 with two-tail t test and Bonferroni correction) except where stated (n.s.).

four residues, GluN2A-Ala414, Lys738, Gly740, and Arg741,
which are Arg, Met, Arg, and Lys residues in GluN2D, respec-
tively (Fig. 3a; yellow residues and arrows in the sequence
alignment). GIuN2A-Ala414 is located in the D1-lobe, whereas
GluN2A-Lys738, Gly740, and Arg741 are on Helix H in the D2-
lobe proximal to the predicted binding site for the carboxyethyl
group of UBP791. These residues are completely conserved
among human, rat, and chicken, though GluN2A-Ala414 and
-Lys738 are not conserved in X. laevis (frog) and Danio rerio
(zebrafish) (Supplementary Fig. 1). To assess the involvement of
the above four residues in defining GluN2A and GluN2D
subtype-specific pharmacological properties, we incorporated the

mutations, Ala414Arg, Lys738Met, Gly740Arg, and Arg741Lys, in
the full-length GIuN2A (GluN2A-4m), and measured excitatory
potency of L-glutamate and inhibitory potency of UBP791 by
TEVC as above. The GluN2A-4m showed drastically increased L-
glutamate potency (ECso=0.61+0.07uM) compared with
GluN2A (ECsp = 5.91 £ 0.77 uM) although not to the equal level
of GluN2D (ECso=0.17+0.01 uM) (Fig. 3c, Supplementary
Fig. 2a, b). It also showed a large increase in UBP791 potency
(K;=0.71£0.14 uM) compared with GluN2A (K;=4.07+
0.64 uM) although not to the equal level of GluN2D (K; = 0.09 +
0.02puM) (Fig. 3d, Supplementary Fig. 2c, d). Overall, the
GluN2D-like potencies for r-glutamate and UBP791 in the
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Fig. 3 Site-directed mutagenesis of GluN2A binding pocket and its effect on L-glutamate and UBP791 sensitivity. a, b The GIuN2A LBD of the
GIuN1-GIuN2A LBD crystal structure complexed to PPDA (cyan sticks; PDB code: 4NF6) colored as in Fig. 1. Residues within the ligand-binding pocket
(green dashed oval) which are not conserved among GIuN2A-D in the sequence alignment (panel b arrows) are shown in yellow. Four mutations
(Alad14Arg, Lys738Met, Gly740Arg, Arg741Lys) were introduced in GIUN2A to generate GIuUN2A-4m. ¢ ECsq values for -glutamate and d K; values
for UBP791 for GluN1-4a/GIuN2A-4m were obtained by TEVC. Dose-response for UBP791 was measured in the presence of 100 pM glycine and

1pM L-glutamate with varying UBP791 concentrations (Supplementary Fig. 2). Single data points are shown as open circles, the bar graph represents the
mean with error bars for s.d., and the number of recordings (n) and the fold-difference to ECsq and K; of GIUN2D are as shown. Pairwise comparison shows
subtypes have different potencies (p < 0.0001 with two-tail t-test and Bonferroni correction).

GluN2A-4m mutant indicated that the four residue positions in
the binding cleft (Fig. 3a) are the major determinants of subtype-
specific ligand binding.

GluN2A-4m LBD serves as structural proxy for GluN2D LBD.
To understand the exact-binding mode of UBP791 and the
molecular basis for the GIluN2C/2D subtype-selectivity, and to
determine unexplored possibilities for compound development,

we next sought to obtain structures of the GIuN2A LBD and
GluN2D LBD complexed to UBP791. While crystal structures of
GluN2D LBD in complex with agonists and partial agonists have
been successfully obtained3%3%, an antagonist-bound GluN2D
LBD structure has been technically difficult to capture. The only
competitive antagonist-bound crystal structures of NMDAR
GluN2 LBDs to date are the ones complexed to GluN1-GluN2A
LBDs*0-42, which have been obtained by soaking Gly- and
L-glutamate-bound GluN1-GluN2A LBD crystals against the
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Table 1 Data collection and refinement statistics (molecular replacement).
GIuN1/GluN2A-4m LBD GluN1/GIluN2A LBD GluN1/GluN2A-4m LBD
+Gly, Glu +Gly, UBP791 +Gly, UBP791
Data collection
Space group P2:2:24 P2:2:24 P2:2:2,
Cell dimensions
a, b, c (A) 54.64, 90.06, 125.15 59.37, 85.75, 119.87 58.99, 85.08, 120.41
a, py () 90, 90, 90 90, 90, 90 90, 90, 90
Resolution (A) 73.10-1.66 69.74-2.52 49.15-2.41
(1.69-1.66) (2.56-2.52) (2.49-2.41)
Staraniso: 69.74-2.13
(2.32-2.13)
Rrmerge 0.073 (0.515) 0.104 (0.903) 0.156 (0.668)
Staraniso: 0.117 (1.318)
I/ol 14.3 (2.2) 12.7 (2.3) 11.60 (1.89)
Staraniso: 10.5 (1.5)
Completeness (%) 96.40 (74.9) 99.9 (100.0) 98.03 (84.68)
Star spherical/ ellipsoidal:
78/94.3 (19.7/61.3)
Redundancy 6.3 (3.9) 6.6 (6.8) 5.8 (4.6)
Star: 6.6 (6.6)
Refinement (staraniso file)
Resolution (A) 50.07-1.66 69.74-2.13 49.15-2.41
No. reflections 71,406 (5,481) 26,485 (178) 23,716 (1,995)
Rwork/ Riree 0.1794/0.2118 0.2075/0.2531 0.1914/0.2453
No. atoms
Protein 4,553 4,442 4,547
Ligands 15 38 38
Water 607 66 15
B-factors (A2)
Protein 30.51 55.39 40.89
Ligands 16.00 53.10 35.08
Water 40.08 53.50 38.24
R.m.s. deviations
Bond lengths (A) 0.009 0.002 0.002
Bond angles (°) 0.997 0.49 0.48
Datasets for all of the three structures above were collected from single crystals. Values in parentheses are for highest-resolution shell

crystallization buffer containing Gly and GluN2 antagonists to
substitute L-glutamate with the antagonists within the GluN2A
LBD (see “Methods”). Similarly soaking the agonist-bound
GluN2D LBD crystals®® or co-crystallization with antagonists
did not result in antagonist-bound GluN2D LBD structures. We
therefore attempted to use GluN2A-4m LBD as a structural
mimic of GluN2D LBD and a tool to capture antagonist binding
by GluN2D. Here, we found that GluN2A-4m LBD protein can
be recombinantly expressed, purified, and co-crystallized with
GluN1 LBD protein in the presence of Gly and L-glutamate as in
the case of GluN1-GIuN2A LBD heterodimers*?41. The crystals
of the Gly- and r-glutamate-bound GluN1-GluN2A-4m LBDs
showed X-ray diffraction to 1.7 A (Table 1) and the structure was
solved by molecular replacement using the Gly/glutamate-bound
GluN1-GluN2A LBD heterodimer (PDB: 4NF8)%0 as search
probe. The asymmetric unit contained one GIuN1-GluN2A-4m
LBD heterodimer assembled in the back-to-back orientation
(Fig. 4a) nearly identical to that observed in the previous
GluN1-GluN2A LBD  structures'>40-43.  GluN2A-4m and
GluN2D LBDs had nearly identical overall fold with a minor
difference in the Loopl region (Fig. 4b). More importantly,
residues around the r-glutamate binding site are in similar
orientations to those of GIuN2D (RMSD 0.115 A over 7 residues/
53 atoms) (Fig. 4c). Only minor differences in side chain orien-
tations of GluN2A-4m Arg740 and Lys741 were observed com-
pared with the equivalent residues in GluN2D (GluN2D-Arg765
and Lys766) (Fig. 4d). Hence, the structural comparison verified

that the GIuN2A-4m LBD serves as a valid GluN2D LBD
structural proxy suitable for studying binding of agonists and
competitive antagonists.

UBP791-bound GluN1-GluN2A and GluN1-GluN2A-4m LBD
structures. To identify the molecular determinants underlying
GluN2C/2D-specific binding of UBP791 over GIuN2A/2B, we
next sought to obtain and compare structures of GluN1-GluN2A
LBD and GluN1-GluN2A-4m LBD complexed to UBP791.
Toward this end, we implemented the strategy of substituting
antagonists into the agonist-bound GluN1-GluN2A LBD crystals
by a soaking method similar to our previous studies?®4!. The
crystals of the UBP791-soaked GluN1-GluN2A LBD conferred
X-ray diffraction that extended to the Bragg spacing of 2.5 A
(Table 1). The crystal structure was solved by using the PPDA-
bound GluN1-GluN2A LBD (PDB: 4NF6)40 as search probe. In
the asymmetric unit, the interaction between the GluN1 and
GluN2A LBDs is dominated at the D1 lobes as in the agonist-
bound GluN1-GluN2A LBD (Fig. 5a). However, the D2 lobe of
the UBP791-bound GIluN2A LBD ‘opens’ by 22.1° similar to the
extent previously observed in the PPDA-bound GluN1-GluN2A
LBD (20.4°% Supplementary Fig. 3a, b)40. This large conforma-
tional change in the UBP791-bound GIluN2A LBD compared
with the agonist-bound form is reflected in changes in the unit
cell dimensions (Table 1). At the D1-D2 bilobe cleft, clear density
for the PPDA-backbone of UBP791 is present. However, the
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Fig. 4 Crystal structure of GluN1-GluN2A-4m LBD and comparison with GIuN2D LBD. a Crystal structure of the GIuN1-GIuN2A-4m LBD heterodimer in
complex with glycine (orange sphere) and L-glutamate (yellow sphere). Helices are labeled with underlined letters and the color coding is in accordance to
Fig. 1. b Structures of the GIuN2A-4m LBD and the GIuN2D LBD (PDB: 30EN) can be superposed with one another at an RMSD of 0.45 A over 224 Ca
positions. € Comparison of the L-glutamate-binding sites of GIuUN2D and GIuN2A-4m shows the similar mode of ligand-receptor interactions. Residue

numbering shown for GIuN2A-4m and GIuN2D (in brackets). d Mutated residues in GIuN2A-4m overlap well with the equivalent residues in GIuUN2D with

minor differences in side chain orientations.

density of the carboxyethyl group is broken and disordered
(Fig. 5a).

The crystal structure of the GIuNI-GluN2A-4m LBD was
obtained by implementing a modified agonist co-crystallization and
soaking protocol. This involved co-crystallizing GluN1-GluN2A-
4m LBD with Gly and the low potency agonist homoquinolinic acid
(HQA), followed by soaking against a buffer containing UBP791 in
the presence of Gly. This modification resulted in the structure fully
occupled by UBP791 at 2.4 A resolution (Fig. 5d). The extent of the
bilobe ‘opening’ of the GluN2A-4m LBD as a result of UBP791
binding was 22.3° (Supplementary Fig. 3c) similar to that of the
GluN1-GluN2A LBD (Supplementary Fig. 3b). However, the
electron density for the UBP791 ligand in this structure is fully
continuous and substantially more ordered suggesting favorable
binding of UBP791 to GluN1-GluN2A-4m LBD over
GluN1-GluN2A LBD (Fig. 5d). En route to the above UBP791-
bound structures, we have also obtained structures of the
GluN1-GluN2A LBD and the GluN1-GluN2A-4m LBD in
complex with HQA. These structures explained the underlying

mechanism for the low potency nature of HQA and are presented
in Supplementary Note 1.

Molecular elements for subtype-selective binding of UBP791.
Structural comparison between the GluN1-GluN2A LBD and the
GluN1-GluN2A-4m LBD complexed to UBP791 provided
important insights into preferential binding of UBP791 to
GluN2D over GluN2A. In both crystal structures, only the
(2S,3R)-enantiomer of UBP791 was observed in the inter-D1-D2
domain cleft, consistent with the previous finding that (25,3R)-
PPDA has approximately tenfold higher potency compared with
(2R,35)-PPDA2>40 and about 1.4-fold higher potency than the
racemate??, suggesting that the more potent isomer is able to bind
more effectively particularly in the lower concentration range
compared with the less potent isomer. The binding modes of the
piperazine and phenanthrene moieties are identical to those
observed in the structure of the GluN1-GluN2A LBD complexed
to PPDA%. That is, the piperazine ring interacts via polar
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interactions involving residues GIuN2A/GluN2A-4m-Thr513,
Arg518, Ser511 and Ser689 whereas the phenanthrene ring forms
Van der Waals interaction with GIuN2A/GluN2A-4m-Tyr730,
Val734, Tyr761, Val713, Phe416, Tyr737, and Ala414 in GIuN2A
(Arg414 in GluN2A-4m) (Fig. 5b, e). In contrast, we observed the
major differences in the protein-ligand binding mode between the
carboxyethyl group of UBP791 and the GluN2A LBD or the
GluN2A-4m LBD (Fig. 5¢, f).

S511  E413

Y730 V713 4

N
M73
(763) -

GluN2A-4m (GIuN2D) numbering

In the GIuN1-GluN2A-4m LBD, several elements favor
accommodation of the carboxyethyl group. The most notable is
the specific polar interaction with the amino group of GIuN2A-
4m-Lys741 (Lys766 in GluN2D) (Fig. 5e, f). This interaction is
made possible by the hydrophobic interaction of GluN2A-4m-
Lys741 with GluN2A-4m-Met738 (Met763 in 2D), which orients
the GluN2A-4m-Lys741 side chain toward UBP791. GluN2A-
4m-Met738 is positioned to form sulfur-aromatic interactions
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Fig. 5 Structures of glycine/UBP791 complexed to GluN1-GIuN2A (WT) and GluN1-GluN2A-4m LBD. a Overall structure of the GIuN1-GIuN2A LBD
complexed to glycine (orange spheres) and UBP791 (cyan spheres) colored as in Fig. 1. Shown in mesh below is the F, — F. omit map of UBP791 contoured
at 36. b, ¢ The binding site of UBP791 (cyan sticks) showing polar (dashed lines) and hydrophobic interactions. GIuN2A-Lys738 and -Glu714 form a
hydrogen bond whereas GIuN2A-Arg741 and -Thr797 form a water-mediated hydrogen bond. d Overall structure of the GIuNT-GIuN2A-4m LBD
complexed to glycine (orange spheres) and UBP791 (cyan spheres). Note that the F, — F. omit map of UBP791 contoured at 3¢ (green mesh) here is more
ordered and continuous compared with that in the GIuNT-GIuN2A LBD in a. e The binding site of UBP791 (cyan sticks) showing similar polar (dashed lines)
and hydrophobic interactions with the piperazine and phenanthrene moieties to those in the GIuN1-GIuN2A LBD in a. f In contrast to the GIuNT-GIuN2A
LBD, GIuN2A-4m-Met738 forms sulfur-aromatic interactions with the ligand and Tyr737, while GIuN2A-4m-Lys741 forms a hydrogen bond with the

carboxyethyl group of UBP791.

with the phenanthrene moiety of UBP791 as well as GluN2A-4m-
Tyr737 to stabilize the binding pocket. Furthermore, GIuN2A-
4m-Met738 and the methylene group closest to the phenanthrene
ring of UBP791 may form hydrophobic interactions. The other
mutated residues GluN2A-4m-Arg414 and -Arg740 are not
further involved in binding of UBP791.

The equivalent residues to GluN2A-4m-Met738 and GluN2A-
4m-Lys741 in the GluN1-GluN2A LBD are GluN2A-Lys738 and
GIuN2A-Arg741, which are not involved in binding of UBP791.
The largest difference here is that the GluN2A-Arg741 side chain
faces away from the binding pocket, which is likely facilitated by
charge repulsion between the amino group of GluN2A-Lys738
and the guanidinium group of GluN2A-Arg741. GluN2A-Arg741
instead forms a stacking interaction with GluN2A-Tyr737 and a
water-mediated hydrogen bond with GluN2A-Thr797 (Fig. 5c).
GluN2A-Lys738 is also not ideally positioned to interact with the
carboxyethyl group and instead forms a polar interaction with
GluN2A-Glu714 from Helix G (Fig. 5¢). The unfavorable binding
of UBP791 in the GluN2A binding cleft is reflected by the
discontinuous and disordered electron density of the carboxyethyl
group (Fig. 5a), which is in stark contrast to the density observed
in GluN2A-4m (Fig. 5d). In summary, structural comparison
between the GluN2A LBD and GluN2A-4m LBD (our GluN2D
mimic for this study) implied that the key molecular determi-
nants for preferential binding of UBP791 to GIluN2D over
GluN2A lie in the 738 and 741 positions (numbering in GluN2A)
where they are lysine and arginine in GluN2A and methionine
and lysine in GIuN2D. Together, the methionine and lysine
residues in GluN2D favorably accommodate the carboxyethyl
group of UBP791 by forming both polar and hydrophobic
interactions. The methionine and lysine residues are also
conserved at the equivalent positions of GluN2C, thus,
GluN2C-specifcity is also mediated via a similar mechanism.

Validation of subtype-specific binding elements of UBP791. To
test the validity of the structural observation for the critical
involvement of the methionine/lysine residue combination
(GluN2D-Met763/Lys766, and GluN2A-4m-Met738/Lys741) in
preferential binding of UBP791 to GIuN2D over GluN2A,
we conducted site-directed mutagenesis and assessed inhibition
potencies of the mutant channels by TEVC. Specifically,
we converted the GluN2D residues to the equivalent ones in
the GluN2A subunit and measured macroscopic currents of the
GluN1-4a/GluN2D mutant NMDARs. We first tested the single
point mutants, GluN2D-Met763Lys and GIuN2D Lys766Arg,
which showed approximately fivefold and twofold increases in
K; compared with the wildtype (WT) GluN2D, respectively
(Fig. 6). The mutant GluN2A-Lys738Met (the reverse mutant of
GluN2D-Met763Lys) was previously shown to increase PPDA
potency by fivefold compared with the WT GluN2A“?. Thus, our
present result on GluN2D-Met763Lys strongly supported the
interaction between GluN2D-Met763 and the phenanthrene
backbone contained in both PPDA and UBP791. The modest
change in the K; value of GluN2D Lys766Arg may be attributed to

the possibility that, in the absence of potential charge repulsion as
seen in the UBP791-bound GluN2A WT LBD structure, the
arginine side chain could still orient itself to form some inter-
action with the carboxyethyl group, hence we next tested the
double mutant GluN2D-Met763Lys/Lys766Arg. In line with our
structural observations, this double mutant lowered UBP791
potency by 13-fold compared with the WT GluN2D, demon-
strating that GluN2D-Met763 and -Lys766 synergistically con-
tribute to subtype-selective UBP791 binding (Fig. 6d).

Restricted compound conformation raises subtype-selectivity.
Based on the UBP791-bound crystal structures above, we further
developed three more PPDA-derivatives that aimed to improve
selectivity and potency by mediating effective interactions with
the critical GluN2D-specific residues around the ligand-binding
pocket, GluN2D-Met763 and -Lys766. For this purpose, three
compounds with the R-group containing carboxylate moieties of
different length, bulkiness, and rigidity were synthesized (Fig. 7a)
and tested for changes in inhibition potencies using TEVC elec-
trophysiology. The largest change observed was for UBP1700
((28*,3R*)-1-(7-(2-carboxyvinyl)phenanthrene-2-carbonyl) piper-
azine-2,3-dicarboxylic acid), with about 50- to 60-fold GluN2C/
2D-selectivity over GIuN2A and 40- to 50-fold selectivity over
GluN2B, which represents a substantial improvement over
UBP791. While potency improved for all of the subtypes tested,
the K; values for GluN2C and GIuN2D are remarkably low
at ~7-9 nM, making UBP1700 one of the most potent GluN2
antagonists to date (Fig. 7b, Supplementary Fig. 4). We speculate
that the rigidity of the carboxyvinyl group of UBP1700 resulting
from the incorporation of the double bond restricts its con-
formation to one that leads to favorable interactions with
GluN2D-Met763 and -Lys766. The improved effect of UBP1700
was also observed on the GluN2D-mimic, GluN2A-4m, further
demonstrating that the four mutations at the ligand-binding
pocket can facilitate GluN2A to possess GluN2D-like ligand-
binding properties (Fig. 7b). The other two compounds, UBP1701
and UBP1702, showed smaller incremental improvements with
regards to selectivity (Fig. 7c). While all the compounds we tested
have been cis-configured diastereomers at the 2- and 3-positions
of the piperazine moiety, UBP1701 has an additional chiral center
in the R-group (Fig. 7a), thus, leaving the possibility that one of
the eight stereoisomers in the UBP1701 mixture could show
improved selectivity.

UBP791 and UBP1700 are highly NMDAR selective. It has been
previously shown that (2S,3R)-PPDA weakly inhibits non-NMDARs
including GluA2 and GluK1 (K; of 7.85 and 1.17 uM)%. Similarly,
other piperazine-2,3-dicarboxylic acid derivatives can inhibit both
NMDAR as well as GluK1%. In contrast, UBP791 and UBP1700
only minimally act on non-NMDARs (Supplementary Table 2,
Supplementary Fig. 5), a significant improvement particularly on
GluK1 receptors (K; of UBP791~ 100 uM, of UBP1700 ~ 32 pM)
(Supplementary Fig. 5). Comparisons between our UBP791-bound
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Fig. 6 Effect of mutations in GIuN2D on L-glutamate and UBP791 sensitivity. a Representative TEVC dose-response traces of single mutant GIluN1-4a/
GIuN2D Met763Lys (left panel), Lys766Arg (middle panel) or double mutant Met763Lys/Lys766Arg (right panel) NMDARs held at —60 mV. Currents
were evoked by application of 100 pM glycine and 1pM L-glutamate and inhibited by varying concentrations of UBP791 (Met763Lys: concentration
increments: 0.12/0.37/1.1/3.3/10/30/60 pM; for Lys766Arg and double mutant: three-fold increments from 0.08-60 pM). b Averaged dose-response
curves (mean +s.d.) for inhibition with UBP791 from eight, twelve, and six recordings for GluN1-4a/GIuN2D Met763Lys, GIuN1-4a/GIuN2D Lys766Arg,
and GIluN1-4a/GIuN2D Met763Lys/Lys766Arg, respectively, fit with the Hill equation to calculate ICsq and Hill coefficient (ny). € ECsq for L-glutamate and
d K; for UBP791 for the mutants were obtained by TEVC recordings as in Fig. 2. Single data points are shown as open circles, the bar graph represents the
mean with error bars for s.d., the number of recordings (n) and the fold-difference to ECsq and K; of GIuN2D (WT) are as shown. Pairwise comparison
shows WT and mutants have different potencies (p <0.05 with two-tail t-test and Bonferroni correction) except where stated (n.s.).

GluN2 LBD structures with the antagonist-bound GluA2 LBD
(PDB: 1FTL)** or GluKl LBD (4YMB)% reveal potential steric
clashes between the PPDA-backbone moiety and the residues
GluA2-Glu726/Met729  (GluA1-Glu719/Met722) and GluK1-
Glu753 (GluK2-Glu738), as well as charge repulsion between the
carboxyethyl group of UBP791 and GluK1-Glu457 (GluK2-Glu441)

10

(Supplementary Fig. 6). Hence, insensitivity of PPDA, UBP791
and UBP1700 on AMPAR is likely due to steric clashes with
piperazine/phenanthrene moieties, while increased insensitivity of
UBP791 and UBP1700 on kainate receptors can likely be attributed
to charge repulsion resulting from the additional carboxyethyl or

carboxyvinyl group.
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Fig. 7 Designed compounds with increased GIuN2C/2D selectivity and potency. a UBP1700, 1701, and 1702 have carboxylate moieties of different
length, bulkiness, and rigidity. The chiral center in the R-group of UBP1701 is marked with an asterisk. At physiological pH the amine group of the piperazine
ring is protonated and therefore positively charged and the three carboxylic acid groups are negatively charged. b K; values for UBP1700 inhibition were
measured on GluN1-4a/GIuN2 (a-d) NMDARs and GluN1-4a/GIuN2A-4m NMDAR as described in Fig. 2. Inhibition dose-response was observed in the
presence of 100 pM glycine, 1 or 3 uM L-glutamate, and varying concentrations of UBP1700 (Supplementary Fig. 4). Pairwise comparison shows subtypes
have different potencies (p < 0.05 with two-tail t-test and Bonferroni correction) except where stated (n.s.). ¢ Potencies of UBP1701 and UBP1702 on

GluN1-4a/GIuN2A and GluN1-4a/GIuN2D were obtained as in Fig. 2.

Discussion

Highly potent subtype-specific reagents of NMDARs have long
been heavily sought after for uses in molecular neuroscience
research and for therapeutic interventions. The current study
delineated the critical molecular elements for ligand-binding
selectivity for the GIuN2C/2D subunits over the GluN2A/2B
subunits to be a set of methionine and lysine residues in the
ligand-binding pocket of the GluN2C/2D LBD. UBP791, the
main compound studied here, presented substantial improvement
in GluN2C/2D-selectivity over GIuN2A/2B (16-50x) compared
with its prototype, PPDA (2.5-6x). Our crystal structures and the
series of electrophysiological studies confirmed the involvement
of the carboxyethyl group of UBP791 in subtype-specific binding
and further led to development of UBP1700 with higher potency
and subtype-selectivity. Overall, our study serves as a proof-of-
principle that the LBD can be effectively targeted for subtype-
specific control of NMDARSs.

In this study, we used GluN2A-4m as a proxy in structural
studies due to the technical difficulty in structural analysis of the
GluN2D subunit. To date, the only structural work on GluN2D
remains that of the GluN2D LBD complexed to agonists and
partial agonists®39. Nevertheless, the GluN2A-4m mutant
mostly but not fully recaptures GluN2D-like functional properties
including high r-glutamate potency as well as selectivity of
UBP791 and UBP1700 over GIuN2A/2B. The remainder of the
GluN2D effect likely stems mainly from the ATD that is known
to control 1-glutamate potency allosterically*®47. Nevertheless,
the structures of the agonist-bound GluN2A-4m LBD and
GluN2D LBD3839 were similar to each other. We suggest that our
antagonist-bound GluN2A-4m LBD structure would be similar to
the actual antagonist-bound structure of GluN2D LBD since the
binding residues for UBP791 in GluN2A-4m LBD are identical in
GluN2D LBD and the specific mode of antagonist-binding
mediates the domain opening of the D1 and D2 lobes. Buttressing
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this prediction is the fact that our site-directed mutagenesis
experiments on the GIluN1/GluN2D receptors which were
designed based on the UBP791-bound GluN2A-4m LBD struc-
ture showed consistent results with the structural observations
(Fig. 6).

The improved subtype-selective binding of UBP791 over
PPDA is attributed largely to a lowered potency for GluN2A
(Ki=~0.5uM for PPDA and K;=~4uM for UBP791) while
maintaining potency for GluN2C/2D. The PPDA- and UBP791-
bound GluN2A LBD structures did not show significant differ-
ence in the overall protein conformation suggesting that the
altered potency in GluN2A may be driven by changes in ligand-
binding affinity. Binding affinity can be described in thermo-
dynamic terms as enthalpy and entropy changes where enthalpy
changes reflect ligand-protein interactions and entropy changes
include conformational entropy (loss of conformational degrees
of freedom upon binding) and desolvation entropy (decreasing
exposure of hydrophobic groups to aqueous solvent)*8. Binding
of PPDA, UBP791 and likely UBP1700 is mediated by similar sets
of Van der Waals interactions, hydrogen bonds, and exclusion of
solvent around the piperazine and phenanthrene moieties.
Binding of UBP791 to GluN2A may result in an unfavorable
conformational entropy change due to the loss of freedom around
the carboxyethyl group. For UBP791 binding to GluN2C/2D, the
enthalpy gains derived from the interaction between the car-
boxyethyl group and the methionine/lysine likely compensate for
the conformational entropy loss. We can extend these con-
siderations to a comparison between UBP791 and UBP1700.
With an assumption that the methionine and lysine residues
would still be able to form similar interactions with the carbox-
yvinyl group of UBP1700, the restricted conformation of car-
boxyvinyl would decrease the loss of conformational entropy and
improve the affinity compared with UBP791. Such steric
restriction in compounds to minimize conformational entropy
loss has been a common strategy in drug development*®, though
it is also known that in some cases flexible ligands favor entropic
binding>°.

Given the increased interest in the physiological and patholo-
gical roles of GluN2C- and GIuN2D-containing NMDARSs,
multiple non-competitive GluN2C/2D-selective compounds have
been identified and optimized in recent years, including allosteric
inhibitors QNZ4633>! and DQP-110534 with ~50-fold GluN2C/
2D preference over GluN2A/2B, and NAB-14 with about 800-fold
preference®®. A current shortfall for these compounds is their low
potency with ICs, values in the micromolar range for GluN2C/
2D. While their binding modes have not been well defined due to
the lack of structures, mutagenesis studies on GIuN2D predicted
the structural determinants for inhibition of QNZ46 and DQP-
1105 to lie in the GluN2D LBD-S2 lobe, close to the linker that
connects the LBD to the TMD333451 whereas those of NAB-14
lie in the M1 helix region of the GluN2D subunits*¢. The UBP
compounds studied here display similar GIJuN2C/2D selectivity as
QNZ46 and DQP-1105, but lower selectivity compared with
NAB-14. However, the UBP compounds possess higher potencies
(K; in the low nanomolar range), thus likely inhibiting the
receptors more effectively than these allosteric compounds in
environments with lower agonist concentrations such as peri- and
extrasynaptic spaces where GluN2D-containg NMDARs are
found. Furthermore, we expect the UBP compounds to
have similar inhibition potencies on tri-heteromeric NMDARs
(e.g. GluN1/GluN2B/GluN2D) as on di-heteromeric NMDARs
(e.g. GluN1/GluN2D). This is because opening of NMDAR
channels requires Gly and glutamate binding to all of the four
subunits, thus, binding of the UBP compounds to even one
GluN2 subunit would be sufficient for inhibition. With respect to
application in animal studies, UBP791 and UBP1700 have not

been used in vivo yet, but previous studies with PPDA-derivatives
suggest that the UBP compounds might be able to cross a healthy
blood-brain barrier??, and can cross a compromised blood-brain
barrier°2.

While the potencies of the UBP compounds are high, it would
be desirable to improve their GluN2C/2D-selectivity. The present
series of the UBP compounds interact with the methionine and
lysine residues unique to GluN2C/2D, but not with the third
unique residue, GluN2D-Arg437 (GluN2C-Arg411), which is in
spatial proximity to the UBP compounds. Thus, we predict that
the UBP compounds that could additionally engage GluN2D-
Arg437 (GIluN2C-Arg411) in ligand binding will display
improved selectivity for GluN2C/2D-containing NMDARs. Ulti-
mately, it would be ideal to develop a compound that can dis-
tinguish GluN2C and GluN2D. One possibility for achieving this
may be to target GluN2D-Pro736/Arg737 or the equivalent
GluN2C-Arg709/Ser710. In addition, in all of the cases, the
selectivity and potency will likely improve by purifying and iso-
lating specific enantiomers. Nevertheless, the current study
demonstrates that the chemical nature of the ligand-binding
pocket of the LBD can be exploited with the piperazine-
phenanthrene backbone and opens the avenue for further
improvements in the specific targeting of GluN2C- or GluN2D-
containing NMDARs.

Methods
Compound synthesis. Compound synthesis and reaction schemes are included in
the Supplementary Methods.

Electrophysiology. Plasmids (pSP or pCI_NEO) harboring rat GluN1 or GluN2
full-length subunits were linearized by restriction digestion and transcribed
according to the manufacturer’s instructions (nMESSAGE mMachine SP6 or T7
kit, ThermoFisher Scientific). Recombinant rat GluN1-4a and GluN2 were
expressed by co-injecting cCRNA at a 1:2 (w/w) ratio into defolliculated X. laevis
oocytes (amounts varied from 0.05-25 ng per oocyte). Two-electrode voltage-
clamp recordings were performed 1-3 days after injection using agarose-

tipped microelectrodes (0.4-1.2 MQ) filled with 3 M KCI at a holding potential
of —60 mV. The bath solution contained 5 mM HEPES, 100 mM NaCl, 0.3 mM
BaCl,, 10 mM Tricine, at pH 7.4 (adjusted with KOH). Currents were evoked by
application of 100 uM Gly and various concentrations of L-glutamate, with and
without addition of inhibitors at various concentrations. For solubility, DMSO
(final 0.1-0.5%) was added to solutions containing UBP compounds, and bath
solutions were matched accordingly. Data were acquired and analyzed using the
software program Pulse (HEKA, Holliston, MA), fitted using the program IGOR to
obtain ECs; values of L-glutamate and ICs, values of antagonists. K; values were
subsequently calculated using the Cheng-Prusoff equation K; = ICs/(1 + [L-glu-
tamate]/ECs,). For the statistical evaluation, we implemented pairwise F-tests to
test variances, and then performed the Student ¢ test with equal or unequal var-
iances as determined previously, and accounted for multiple testing with the
Bonferroni correction.

Expression and purification of GluN1 and GluN2A LBD. Plasmid constructs,
protein expression and purification generally followed previously published
protocols?%41, All of the DNAs encoding NMDARSs used in this study were from
Rattus norvegicus (rat). GlJuN2A-4m (mutant) differed from the WT GluN2A
sequence in the following four residues: Ala414Arg, Lys738Met, Gly740Arg,
Arg741Lys. GluN1 LBD was composed of Met394-Lys544 (GluN1-S1) and Arg663-
Ser800 (GluN1-S2), connected by a Gly-Thr dipeptide linker (Fig. 1b). GluN2A or
GluN2A-4m was composed of Asp402-Arg539 (GluN2A-S1) and GIn661-Asn802
(GluN2A-S2), connected by a Gly-Thr dipeptide linker. The GluN1 LBD construct
was fused with an octa-Histidine (Hisg) tag followed by a thrombin cleavage site at
the N-terminus whereas the GluN2A and GluN2A-4m LBD constructs were fused
to Hise-SUMO at the N-termini. OrigamiB (DE3) Escherichia coli cells (Novagen)
harboring the LBD constructs in pET22b(+) without the pelB sequence were
grown at 37 °C to ODgq of 1.5 and induced with 0.5 mM Isopropyl B-D-1-
thiogalactopyranoside (IPTG) at 15 °C for protein expression.

GluN1 LBD was purified by Ni-nitrilotriacetic acid (NTA) affinity
chromatography, digested with thrombin to remove the Hisg-tag, and further
purified by SP-Sepharose cation exchange chromatography (GE Healthcare), all in
the presence of 1 mM Gly. GIluN2A or GluN2A-4m LBD was purified by Ni-NTA
affinity chromatography, digested with ubiquitin ligase protease-1 to remove the
Hiss-SUMO-tag, and then further purified by Q-Sepharose anion exchange
chromatography (GE Healthcare) and SP-Sepharose cation exchange
chromatography, all in the presence of 1 mM L-glutamate (Glu).
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Crystallization and soaking. The purified GluN1 and GluN2A or GluN1 and
GluN2A-4m LBD protein were separately concentrated to about 6 mg ml~!, mixed
in a 1:1 weight ratio, and dialyzed against 10 mM HEPES (pH 7.0), 100 mM NaCl, 1
mM Gly, and 1 mM Glu. Crystallization was conducted using hanging-drop vapor
diffusion at 18 °C where reservoir solutions contained 100 mM HEPES (pH 7.0),
60-90 mM NaCl, and 15-20% polyethylene glycol monomethylether 2000
(PEG2000 MME). Drops were mixed at 2:1 and 3:1 (protein:reservoir) volume
ratios. Gly/Glu-bound GluN1-GluN2A-4m crystals were briefly soaked against a
buffer with their reservoir solution supplemented with 1 mM Gly, 1 mM Glu and
18% glycerol for a few seconds and flash frozen. For Gly/HQA-bound crystals of
GluN1-GluN2A LBD and GluN1-GluN2A-4m LBD, the pooled protein samples
were dialyzed first against 10 mM HEPES (pH 7.0), 100 mM NaCl, and 1 mM Gly
and later against the same buffer containing 100-200 uM HQA. Prior to setting up
hanging drops for crystallization, 2-5 mM HQA was added to the protein mixture,
which was then equilibrated for 5 min, and centrifuged at 20,000 x g for 10 min.
Gly/HQA-bound GluN1-GluN2A LBD or GluN1-GIuN2A-4m LBD crystals were
briefly soaked against a buffer with their reservoir solution supplemented with

1 mM Gly, 5mM HQA and 18% glycerol for a few seconds and flash frozen.

For Gly/UBP791-bound GluN1-GIuN2A LBD, the GluN1-GluN2A LBD
crystals formed in the presence of Gly/Glu were briefly ‘washed’ three times in the
reservoir solution and soaked in new drops containing 100 mM HEPES (pH 7.0),
18-21% PEG2000 MME, 75 mM NaCl, 1 mM Gly, and 300 uM UBP791 for 24 h
twice. The crystals were soaked in new drops supplemented with up to 10 mM
UBP791 for 12-24 h, subsequently soaked against the same buffer containing 18%
glycerol for a few seconds and flash frozen in liquid nitrogen. The same procedure
was used to obtain the Gly/UBP791-bound GluN1-GluN2A-4m LBD crystals
except that the Gly/HQA-bound GluN1-GluN2A-4m LBD crystals were used for
soaks against UBP791.

Structural analysis. X-ray diffraction data were collected at the ID-17 beamline of
the National Synchrotron Light Source II at Brookhaven National Laboratory at the
wavelength of 0.920 A and at 100 K and processed using HKL2000°3, FastDP%%, or
the autoPROC suite®®, which include XDS%, POINTLESS®’, AIMLESS®8, CCP4°°,
and STARANISO®. All of the structures were determined by molecular replace-
ment using the PDB coordinates 4NF8 and 4NF6 as search probes. Molecular
replacement, structural refinement and model building were performed using
PHASER®!, PHENIX2, and Coot®. All of the refined structural models had more
than 95% favored geometry according to Ramachandran statistics. The ligands
were built in ChemDraw and CIF files were generated in the Grade server (Global
Phasing Ltd). Extent of the D1-D2 domain opening and closing was calculated by
superposing the Cas of the D1 residues then calculating rotational angles required
to superpose the Cas of the D2 residues. The rotational angles were calculated
using the PyMOL script draw_rotation_axis.py (https://pymolwiki.org/index.php/
RotationAxis).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this manuscript are available from the corresponding
authors upon reasonable request. A reporting summary for this Article is available as a
Supplementary Information file. The source data underlying Figs. 2c, d, 3, 4c-e,
Supplementary Figs. 2, 4, and 5, and Supplementary Table 2 are provided as a Source
Data file. Atomic coordinates and structure factors for the GluN1/GluN2A LBDs with
glycine and homoquinolinic acid, and with glycine and UBP791 are deposited to the
Protein Data Bank under the accession codes, 6UZR and 6UZW, respectively. The
coordinates for GluN1/GluN2A-4m LBDs with glycine and glutamate, with glycine and
homogquinolinic acid, and with glycine and UBP791 are deposited under the accession
codes 6UZ6, 6UZG, and 6UZX, respectively.
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