31 research outputs found

    De novo missense variants in FBXO11 alter its protein expression and subcellular localization.

    Get PDF
    Recently, we and others identified de novo FBXO11 variants as causative for a variable neurodevelopmental disorder (NDD). We now assembled clinical and mutational information on 23 additional individuals. The phenotypic spectrum remains highly variable, with developmental delay and/or intellectual disability as the core feature and behavioral anomalies, hypotonia and various facial dysmorphism as frequent aspects. The mutational spectrum includes intragenic deletions, likely gene disrupting and missense variants distributed across the protein. To further characterize the functional consequences of FBXO11 missense variants, we analyzed their effects on protein expression and localization by overexpression of 17 different mutant constructs in HEK293 and HeLa cells. We found that the majority of missense variants resulted in subcellular mislocalization and/or reduced FBXO11 protein expression levels. For instance, variants located in the nuclear localization signal and the N-terminal F-Box domain lead to altered subcellular localization with exclusion from the nucleus or the formation of cytoplasmic aggregates and to reduced protein levels in western blot. In contrast, variants localized in the C-terminal Zn-finger UBR domain lead to an accumulation in the cytoplasm without alteration of protein levels. Together with the mutational data our functional results suggest that most missense variants likely lead to a loss of the original FBXO11 function and thereby highlight haploinsufficiency as the most likely disease mechanism for FBXO11-associated NDDs

    De novo missense variants in FBXO11 alter its protein expression and subcellular localization.

    Get PDF
    Recently, we and others identified de novo FBXO11 variants as causative for a variable neurodevelopmental disorder (NDD). We now assembled clinical and mutational information on 23 additional individuals. The phenotypic spectrum remains highly variable, with developmental delay and/or intellectual disability as the core feature and behavioral anomalies, hypotonia and various facial dysmorphism as frequent aspects. The mutational spectrum includes intragenic deletions, likely gene disrupting and missense variants distributed across the protein. To further characterize the functional consequences of FBXO11 missense variants, we analyzed their effects on protein expression and localization by overexpression of 17 different mutant constructs in HEK293 and HeLa cells. We found that the majority of missense variants resulted in subcellular mislocalization and/or reduced FBXO11 protein expression levels. For instance, variants located in the nuclear localization signal and the N-terminal F-Box domain lead to altered subcellular localization with exclusion from the nucleus or the formation of cytoplasmic aggregates and to reduced protein levels in western blot. In contrast, variants localized in the C-terminal Zn-finger UBR domain lead to an accumulation in the cytoplasm without alteration of protein levels. Together with the mutational data our functional results suggest that most missense variants likely lead to a loss of the original FBXO11 function and thereby highlight haploinsufficiency as the most likely disease mechanism for FBXO11-associated NDDs

    NEXMIF encephalopathy:an X-linked disorder with male and female phenotypic patterns

    Get PDF
    Purpose Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. Methods Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. Results Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. Conclusion NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants

    CTCF variants in 39 individuals with a variable neurodevelopmental disorder broaden the mutational and clinical spectrum

    Get PDF
    Purpose: Pathogenic variants in the chromatin organizer CTCF were previously reported in seven individuals with a neurodevelopmental disorder (NDD). Methods: Through international collaboration we collected data from 39 subjects with variants in CTCF. We performed transcriptome analysis on RNA from blood samples and utilized Drosophila melanogaster to investigate the impact of Ctcf dosage alteration on nervous system development and function. Results: The individuals in our cohort carried 2 deletions, 8 likely gene-disruptive, 2 splice-site, and 20 different missense variants, most of them de novo. Two cases were familial. The associated phenotype was of variable severity extending from mild developmental delay or normal IQ to severe intellectual disability. Feeding difficulties and behavioral abnormalities were common, and variable other findings including growth restriction and cardiac defects were observed. RNA-sequencing in five individuals identified 3828 deregulated genes enriched for known NDD genes and biological processes such as transcriptional regulation. Ctcf dosage alteration in Drosophila resulted in impaired gross neurological functioning and learning and memory deficits. Conclusion: We significantly broaden the mutational and clinical spectrum of CTCF-associated NDDs. Our data shed light onto the functional role of CTCF by identifying deregulated genes and show that Ctcf alterations result in nervous system defects in Drosophila.Peer reviewe

    ADAMTSL4-associated isolated ectopia lentis: Further patients, novel mutations and a detailed phenotype description

    No full text
    ADAMTSL4 mutations seem to be the most common cause of isolated ectoplia lentis (EL) and thus are important concerning the differential diagnosis of connective tissue syndromes with EL as main feature. In this study, we describe an additional cohort of patients with apparently isolated EL. All underwent a detailed clinical exam with cardiac evaluation combined with ADAMTSL4 mutation analysis. Mutations were identified in 12/15 patients with EL. Besides the European founder mutation p. (Gln256Profs*38) we identified five further mutations not yet described in the literature: p. (Leu249Tyrfs*21), p. (Ala388Glyfs*8), p. (Arg746His), p. (Gly592Ser), and p. (Arg865His). Clinical evaluation showed common additional ocular features such as high myopia, but no major systemic findings. In particular: no dilatation of the aortic root was reported on. This report increases the total number of patients with ADAMTSL4 mutations reported on today and reviews in detail the clinical findings in all patients reported on to date demonstrate, that these patients have a mainly ocular phenotype. There are no consistent systemic findings. The differentiation between syndromic and isolated EL is crucial for the further surveillance, treatment, and counseling of these patients, especially in young childre

    Sentinel Lymph Node Mapping in Presumed Low- and Intermediate-Risk Endometrial Cancer Management (SLIM):A Multicenter, Prospective Cohort Study in The Netherlands

    No full text
    The aim was to investigate the incidence of sentinel lymph node (SLN) metastases and the contribution of SLN mapping in presumed low- and intermediate-risk endometrial cancer (EC). A multicenter, prospective cohort study in presumed low- and intermediate-risk EC patients was performed. Patients underwent SLN mapping using cervical injections of indocyanine green and a minimally invasive hysterectomy with bilateral salpingo-oophorectomy. The primary outcome was the incidence of SLN metastases, leading to adjusted adjuvant treatment. Secondary outcomes were the SLN detection rate and the occurrence of complications. Descriptive statistics and univariate general linear model analyses were used. A total of 152 patients were enrolled, with overall and bilateral SLN detection rates of 91% and 61%, respectively. At final histology, 78.9% of patients (n = 120) had truly low- and intermediate-risk EC. Macro- and micro-metastases were present in 11.2% (n = 17/152), and three patients had isolated tumor cells (2.0%). Nine patients (5.9%) had addition of adjuvant radiotherapy based on SLN metastases only. In 2.0% of patients with high-risk disease, adjuvant therapy was more limited due to negative SLNs. This study emphasizes the importance of SLN mapping in presumed early-stage, grade 1 and 2 EC, leading to individualized adjuvant management, resulting in less undertreatment and overtreatment

    Sentinel Lymph Node Mapping in Presumed Low- and Intermediate-Risk Endometrial Cancer Management (SLIM): A Multicenter, Prospective Cohort Study in The Netherlands

    No full text
    The aim was to investigate the incidence of sentinel lymph node (SLN) metastases and the contribution of SLN mapping in presumed low- and intermediate-risk endometrial cancer (EC). A multicenter, prospective cohort study in presumed low- and intermediate-risk EC patients was performed. Patients underwent SLN mapping using cervical injections of indocyanine green and a minimally invasive hysterectomy with bilateral salpingo-oophorectomy. The primary outcome was the incidence of SLN metastases, leading to adjusted adjuvant treatment. Secondary outcomes were the SLN detection rate and the occurrence of complications. Descriptive statistics and univariate general linear model analyses were used. A total of 152 patients were enrolled, with overall and bilateral SLN detection rates of 91% and 61%, respectively. At final histology, 78.9% of patients (n = 120) had truly low- and intermediate-risk EC. Macro- and micro-metastases were present in 11.2% (n = 17/152), and three patients had isolated tumor cells (2.0%). Nine patients (5.9%) had addition of adjuvant radiotherapy based on SLN metastases only. In 2.0% of patients with high-risk disease, adjuvant therapy was more limited due to negative SLNs. This study emphasizes the importance of SLN mapping in presumed early-stage, grade 1 and 2 EC, leading to individualized adjuvant management, resulting in less undertreatment and overtreatment

    Widespread domain-like perturbations of DNA methylation in whole blood of Down syndrome neonates

    No full text
    <div><p>Introduction</p><p>Down syndrome (DS) is the most frequent genetic cause of intellectual disability. Despite the fact that more than 50 years have passed since the discovery of its genetic aberrations, the exact pathogenesis of the DS phenotype has remained largely unexplained. It was recently hypothesized that the DS pathogenesis involves complex (epi)genetic, molecular and cellular determinants. To date, many reports have addressed epigenetic aberrations associated with DS at different developmental stages/ages and tissue types, but to our best knowledge not in DS newborns. This study aimed to investigate genome-wide methylation patterns in DS newborns compared to non-trisomic newborns.</p><p>Method</p><p>We analyzed blood samples obtained from ten newborns with DS and five age-matched non-trisomic newborns. Epigenetic profiles were obtained from extracted DNA using the Illumina Infinium 450K array. Since aberrant blood cell distribution is known to be present in DS, we applied two distinct models: with and without correction for estimated blood cell distribution.</p><p>Results</p><p>Differentially methylated position (DMP) analysis of the uncorrected model detected 19525 significant hits (51,2% hypomethylated). In the corrected model, we found 121953 significant DMPs (49,8% hypomethylated). Independent of the used model we observed a chromosome 21 dosage effect. Moreover, we detected 46 and 145 differentially methylated regions in the uncorrected and corrected model respectively, both showing hypomethylation overrepresentation. Replication analyses of DMPs and DMRs found by Bacalini <i>et al</i>. (2015) showed a large overlap.</p><p>Conclusion</p><p>In this study, we found methylation profile differences between DS newborns and controls reflecting a systematically affected epigenetic profile. The observed chromosome 21 dosage effect suggests the involvement of affected essential regulatory factors/regions or altered expression of chromatin modeling enzymes located on chromosome 21. Additional research is necessary to substantiate these hypotheses.</p></div
    corecore