70 research outputs found

    Planck early results XXV : Thermal dust in nearby molecular clouds

    Get PDF
    Peer reviewe

    Planck early results XVII : Origin of the submillimetre excess dust emission in the Magellanic Clouds

    Get PDF
    Peer reviewe

    Planck early results XXIII : The first all-sky survey of Galactic cold clumps

    Get PDF
    Peer reviewe

    Planck early results XXIV : Dust in the diffuse interstellar medium and the Galactic halo

    Get PDF
    Peer reviewe

    Planck 2018 results. XII. Galactic astrophysics using polarized dust emission

    Get PDF
    We present 353 GHz full-sky maps of the polarization fraction p, angle \u3c8, and dispersion of angles S of Galactic dust thermal emission produced from the 2018 release of Planck data. We confirm that the mean and maximum of p decrease with increasing NH. The uncertainty on the maximum polarization fraction, pmax=22.0% at 80 arcmin resolution, is dominated by the uncertainty on the zero level in total intensity. The observed inverse behaviour between p and S is interpreted with models of the polarized sky that include effects from only the topology of the turbulent Galactic magnetic field. Thus, the statistical properties of p, \u3c8, and S mostly reflect the structure of the magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map S 7p, looking for residual trends. While p decreases by a factor of 3--4 between NH=1020 cm 122 and NH=2 71022 cm 122, S 7p decreases by only about 25%, a systematic trend observed in both the diffuse ISM and molecular clouds. Second, we find no systematic trend of S 7p with the dust temperature, even though in the diffuse ISM lines of sight with high p and low S tend to have colder dust. We also compare Planck data with starlight polarization in the visible at high latitudes. The agreement in polarization angles is remarkable. Two polarization emission-to-extinction ratios that characterize dust optical properties depend only weakly on NH and converge towards the values previously determined for translucent lines of sight. We determine an upper limit for the polarization fraction in extinction of 13%, compatible with the pmax observed in emission. These results provide strong constraints for models of Galactic dust in diffuse gas

    Planck early results. VI. The High Frequency Instrument data processing

    Get PDF
    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857GHz with an angular resolution ranging from 9.9 to 4.4 . The white noise level is around 1.5 μK degree or less in the 3 main CMB channels (100–217 GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project

    Planck 2018 results. XII. Galactic astrophysics using polarized dust emission

    Get PDF
    We present 353 GHz full-sky maps of the polarization fraction pp, angle ψ\psi, and dispersion of angles SS of Galactic dust thermal emission produced from the 2018 release of Planck data. We confirm that the mean and maximum of pp decrease with increasing NHN_H. The uncertainty on the maximum polarization fraction, pmax=22.0p_\mathrm{max}=22.0% at 80 arcmin resolution, is dominated by the uncertainty on the zero level in total intensity. The observed inverse behaviour between pp and SS is interpreted with models of the polarized sky that include effects from only the topology of the turbulent Galactic magnetic field. Thus, the statistical properties of pp, ψ\psi, and SS mostly reflect the structure of the magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map S×pS \times p, looking for residual trends. While pp decreases by a factor of 3--4 between NH=1020N_H=10^{20} cm2^{-2} and NH=2×1022N_H=2\times 10^{22} cm2^{-2}, S×pS \times p decreases by only about 25%, a systematic trend observed in both the diffuse ISM and molecular clouds. Second, we find no systematic trend of S×pS \times p with the dust temperature, even though in the diffuse ISM lines of sight with high pp and low SS tend to have colder dust. We also compare Planck data with starlight polarization in the visible at high latitudes. The agreement in polarization angles is remarkable. Two polarization emission-to-extinction ratios that characterize dust optical properties depend only weakly on NHN_H and converge towards the values previously determined for translucent lines of sight. We determine an upper limit for the polarization fraction in extinction of 13%, compatible with the pmaxp_\mathrm{max} observed in emission. These results provide strong constraints for models of Galactic dust in diffuse gas

    Planck early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds

    Get PDF
    The integrated spectral energy distributions (SED) of the Large Magellanic Cloud (LMC) and SmallMagellanic Cloud (SMC) appear significantly flatter than expected from dust models based on their far-infrared and radio emission. The still unexplained origin of this millimetre excess is investigated here using the Planck data. The integrated SED of the two galaxies before subtraction of the foreground (Milky Way) and background (CMB fluctuations) emission are in good agreement with previous determinations, confirming the presence of the millimetre excess. In the context of this preliminary analysis we do not propose a full multi-component fitting of the data, but instead subtract contributions unrelated to the galaxies and to dust emission. The background CMB contribution is subtracted using an internal linear combination (ILC) method performed locally around the galaxies. The foreground emission from the Milky Way is subtracted as a Galactic Hi template, and the dust emissivity is derived in a region surrounding the two galaxies and dominated by Milky Way emission. After subtraction, the remaining emission of both galaxies correlates closely with the atomic and molecular gas emission of the LMC and SMC. The millimetre excess in the LMC can be explained by CMB fluctuations, but a significant excess is still present in the SMC SED. The Planck and IRAS–IRIS data at 100 μm are combined to produce thermal dust temperature and optical depth maps of the two galaxies. The LMC temperature map shows the presence of a warm inner arm already found with the Spitzer data, but which also shows the existence of a previously unidentified cold outer arm. Several cold regions are found along this arm, some of which are associated with known molecular clouds. The dust optical depth maps are used to constrain the thermal dust emissivity power-law index (β). The average spectral index is found to be consistent with β =1.5 and β =1.2 below 500 μm for the LMC and SMC respectively, significantly flatter than the values observed in the Milky Way. Also, there is evidence in the SMC of a further flattening of the SED in the sub-mm, unlike for the LMC where the SED remains consistent with β =1.5. The spatial distribution of the millimetre dust excess in the SMC follows the gas and thermal dust distribution. Different models are explored in order to fit the dust emission in the SMC. It is concluded that the millimetre excess is unlikely to be caused by very cold dust emission and that it could be due to a combination of spinning dust emission and thermal dust emission by more amorphous dust grains than those present in our Galaxy

    Planck early results. XXII. The submillimetre properties of a sample of Galactic cold clumps

    Get PDF
    We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability of the detections, validate the separation between warm and cold dust emission components, provide the first glimpse at the nature, internal morphology and physical characterictics of the Planck-detected sources. We focus on a sub-sample of ten sources from the C3PO list, selected to sample different environments, from high latitude cirrus to nearby (150 pc) and remote (2 kpc) molecular complexes. We present Planck surface brightness maps and derive the dust temperature, emissivity spectral index, and column densities of the fields. With the help of higher resolution Herschel and AKARI continuum observations and molecular line data, we investigate the morphology of the sources and the properties of the substructures at scales below the Planck beam size. The cold clumps detected by Planck are found to be located on large-scale filamentary (or cometary) structures that extend up to 20 pc in the remote sources. The thickness of these filaments ranges between 0.3 and 3 pc, for column densities NH2 ∼ 0.1 to 1.6 × 1022 cm−2, and with linear mass density covering a broad range, between 15 and 400 M pc−1. The dust temperatures are low (between 10 and 15K) and the Planck cold clumps correspond to local minima of the line-of-sight averaged dust temperature in these fields. These low temperatures are confirmed when AKARI and Herschel data are added to the spectral energy distributions. Herschel data reveal a wealth of substructure within the Planck cold clumps. In all cases (except two sources harbouring young stellar objects), the substructures are found to be colder, with temperatures as low as 7 K. Molecular line observations provide gas column densities which are consistent with those inferred from the dust. The linewidths are all supra-thermal, providing large virial linear mass densities in the range 10 to 300 M pc−1, comparable within factors of a few, to the gas linear mass densities. The analysis of this small set of cold clumps already probes a broad variety of structures in the C3PO sample, probably associated with different evolutionary stages, from cold and starless clumps, to young protostellar objects still embedded in their cold surrounding cloud. Because of the all-sky coverage and its sensitivity, Planck is able to detect and locate the coldest spots in massive elongated structures that may be the long-searched for progenitors of stellar clusters

    Planck early results. XXV. Thermal dust in nearby molecular clouds

    Get PDF
    Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around −7% and +13%, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by the contribution of the J = 2 → 1 and J = 1 → 0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index β, and the dust optical depth at 250 μm τ250. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16−17 K in the diffuse regions to 13−14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T − β anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions.We use near-infrared extinction and Hi data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 μm per hydrogen atom τ250/NH. We report an increase of τ250/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles
    corecore