69 research outputs found

    Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites

    Get PDF
    Plasmodium and Toxoplasma are parasites of major medical importance that belong to the Apicomplexa phylum of protozoa. These parasites transform into various stages during their life cycle and express a specific set of proteins at each stage. Although little is yet known of how gene expression is controlled in Apicomplexa, histone modifications, particularly acetylation, are emerging as key regulators of parasite differentiation and stage conversion. We investigated the anti-Apicomplexa effect of FR235222, a histone deacetylase inhibitor (HDACi). We show that FR235222 is active against a variety of Apicomplexa genera, including Plasmodium and Toxoplasma, and is more potent than other HDACi's such as trichostatin A and the clinically relevant compound pyrimethamine. We identify T. gondii HDAC3 (TgHDAC3) as the target of FR235222 in Toxoplasma tachyzoites and demonstrate the crucial role of the conserved and Apicomplexa HDAC-specific residue TgHDAC3 T99 in the inhibitory activity of the drug. We also show that FR235222 induces differentiation of the tachyzoite (replicative) into the bradyzoite (nonreplicative) stage. Additionally, via its anti-TgHDAC3 activity, FR235222 influences the expression of ∼370 genes, a third of which are stage-specifically expressed. These results identify FR235222 as a potent HDACi of Apicomplexa, and establish HDAC3 as a central regulator of gene expression and stage conversion in Toxoplasma and, likely, other Apicomplexa

    Diurnal rhythms of vitamin D binding protein and total and free vitamin D metabolites

    Get PDF
    Vitamin D binding protein (DBP) concentration is known to influence the availability and bioactivity of vitamin D metabolites but its diurnal rhythm (DR), its inter-relationships with the DRs of vitamin D metabolites and its influence on free vitamin D metabolite concentrations are not well described. The DRs of plasma total 25(OH)D, total 1,25(OH)2D, DBP, albumin and calculated free 25(OH)D and free 1,25(OH)2D were measured in men and women aged 60–75 years and resident in the UK (n 30), Gambia (n 31) and China (n 30) with differences in lifestyle, dietary intake and vitamin D status. Blood samples were collected every 4 h for 24 h and DRs statistically analysed with Fourier regression. Gambians had significantly higher plasma concentrations of vitamin D metabolites and lower albumin concentration compared to the British and Chinese. Significant DRs were observed for all analytes and calculated free vitamin D metabolites (P < 0.01). The pattern of DRs was similar between countries. The magnitude of the DRs of free 1,25(OH)2D was attenuated compared to that of total 1,25(OH)2D whereas it was not different between total and free 25(OH)D. Relationships between the DRs were generally weak. There was no phase shift between 1,25(OH)2D and DBP with the strongest cross correlation at 0 h time lag (r = 0.15, P = < 0.001). In comparison, 25(OH)D correlated less well with DBP (1 h time lag, r = 0.07, P = 0.12). These data demonstrate a relationship between the DRs of 1,25(OH)2D and DBP, possibly to maintain free 1,25(OH)2D concentrations. In contrast, the DRs of total and free 25(OH)D appeared to be less influenced by DBP, suggesting that DBP has comparatively less effect on 25(OH)D concentration and 25(OH)D availability. This work highlights the importance of standardisation in timing of sample collection particularly for the assessment of plasma protein concentrations

    Computational Reverse-Engineering of a Spider-Venom Derived Peptide Active Against Plasmodium falciparum SUB1

    Get PDF
    merozoites and invasion into erythrocytes. As PfSUB1 has emerged as an interesting drug target, we explored the hypothesis that PcFK1 targeted PfSUB1 enzymatic activity. culture in a range compatible with our bioinformatics analysis. Using contact analysis and free energy decomposition we propose that residues A14 and Q15 are important in the interaction with PfSUB1.Our computational reverse engineering supported the hypothesis that PcFK1 targeted PfSUB1, and this was confirmed by experimental evidence showing that PcFK1 inhibits PfSUB1 enzymatic activity. This outlines the usefulness of advanced bioinformatics tools to predict the function of a protein structure. The structural features of PcFK1 represent an interesting protein scaffold for future protein engineering

    Data from: Computational design of protein-based inhibitors of Plasmodium vivax subtilisin-like 1 protease

    No full text
    Background: Malaria remains a major global health concern. The development of novel therapeutic strategies is critical to overcome the selection of multiresistant parasites. The subtilisin-like protease (SUB1) involved in the egress of daughter Plasmodium parasites from infected erythrocytes and in their subsequent invasion into fresh erythrocytes has emerged as an interesting new drug target. Findings: Using a computational approach based on homology modeling, protein–protein docking and mutation scoring, we designed protein–based inhibitors of Plasmodium vivax SUB1 (PvSUB1) and experimentally evaluated their inhibitory activity. The small peptidic trypsin inhibitor EETI-II was used as scaffold. We mutated residues at specific positions (P4 and P1) and calculated the change in free-energy of binding with PvSUB1. In agreement with our predictions, we identified a mutant of EETI-II (EETI-II-P4LP1W) with a Ki in the medium micromolar range. Conclusions: Despite the challenges related to the lack of an experimental structure of PvSUB1, the computational protocol we developed in this study led to the design of protein-based inhibitors of PvSUB1. The approach we describe in this paper, together with other examples, demonstrates the capabilities of computational procedures to accelerate and guide the design of novel proteins with interesting therapeutic applications

    Computational Design of Protein-Based Inhibitors of Plasmodium vivax Subtilisin-Like 1 Protease

    No full text
    International audienceBackground: Malaria remains a major global health concern. The development of novel therapeutic strategies is critical to overcome the selection of multiresistant parasites. The subtilisin-like protease (SUB1) involved in the egress of daughter Plasmodium parasites from infected erythrocytes and in their subsequent invasion into fresh erythrocytes has emerged as an interesting new drug target.Findings: Using a computational approach based on homology modeling, protein–protein docking and mutation scoring, we designed protein–based inhibitors of Plasmodium vivax SUB1 (PvSUB1) and experimentally evaluated their inhibitory activity. The small peptidic trypsin inhibitor EETI-II was used as scaffold. We mutated residues at specific positions (P4 and P1) and calculated the change in free-energy of binding with PvSUB1. In agreement with our predictions, we identified a mutant of EETI-II (EETI-II-P4LP1W) with a Ki in the medium micromolar range.Conclusions: Despite the challenges related to the lack of an experimental structure of PvSUB1, the computational protocol we developed in this study led to the design of protein-based inhibitors of PvSUB1. The approach we describe in this paper, together with other examples, demonstrates the capabilities of computational procedures to accelerate and guide the design of novel proteins with interesting therapeutic applications

    PvSUB1 homology 3D-model

    No full text
    Plasmodium vivax Subtilisin 1 (Genbank N° FJ536584) homology model generated by the modeling software Modeller and cited in Bastianelli et al, Plos One In press 2014)

    Free energy decomposition.

    No full text
    <p>Blue: All atoms, Red: Side chain atoms, Green: Backbone atoms. The largest contribution to the free energy of binding comes from the main-chain contacts of residues P4, P3, P2 and P1. The highest contribution comes from the cysteine in P3 and its main-chain, accounting for −4.34 kcal/mol.</p

    Docking results.

    No full text
    <p>The red circles indicate the docking poses that have been selected for refinement.</p
    corecore