52 research outputs found

    Trophic ecology of common elasmobranchs exploited by artisanal shark fisheries off south-western Madagascar

    Get PDF
    Knowledge of the trophic ecology and interactions of marine top predators is fundamental for understanding community structure and dynamics as well as ecosystem function. We examined the feeding relationships of 4 heavily exploited elasmobranchs caught in coastal artisanal shark fisheries in south-western Madagascar in 2009 and 2010—Sphyrna lewini, Loxodon macrorhinus, Carcharhinus falciformis and Rhynchobatus djiddensis—using stable isotope (δ15N and δ13C) analysis. Relative trophic position (indicated by δ15N) and foraging location (indicated by δ13C) differed among species. Isotopic niche width was highly variable: more pelagic species, such as S. lewini and C. falciformis, had the broadest isotopic niches while the benthic R. djiddensis had the narrowest. A high percentage of niche overlap occurred between R. djiddensis and 2 of the species, C. falciformis (93.2%) and L. macrorhinus (73.2%), and to a lesser extent S. lewini (13.3%). Relative trophic position of S. lewini significantly increased with size, suggesting a dietary shift with age. Sex differences in δ15N values were observed in L. macrorhinus, suggesting intraspecific niche partitioning. Variation in stable isotope values among these 4 highly exploited elasmobranch species indicates trophic structuring, likely driven by differences in diet and habitat use as well as by size and sex. This study provides the first baseline information on the trophic ecology of elasmobranchs caught in artisanal fisheries from south-western Madagascar

    Inter-species differences in polychlorinated biphenyls patterns from five sympatric species of odontocetes : Can PCBs be used as tracers of feeding ecology?

    Get PDF
    The authors gratefully acknowledge the assistance of volunteers from the Galician (CEMMA) and Portuguese (SPVS) stranding networks. The authors would like to thank R. Gallois and C. Trichet for their participation on total lipid content analysis. P. Méndez-Fernandez was supported during the research period through a PhD grant from the Fundação do Ministério de Ciência e Tecnologia de Portugal and ANIMATE project (SFRH/BD/36766/2007) and through a Science Without Borders (CSF) young talent postdoctoral grant of the Brazilian government. G. J. Pierce acknowledges support from the EU ANIMATE project (MEXC-CT-2006-042337), University of Aveiro and Caixa Geral de Depósitos (Portugal).Peer reviewedPostprin

    Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis

    Get PDF
    Fumonisins (FBs) are mycotoxins produced by Fusarium fungi. This study aimed to investigate the effect of these feed contaminants on the intestinal morphology and microbiota composition, and to evaluate whether FBs predispose broilers to necrotic enteritis. One-day-old broiler chicks were divided into a group fed a control diet, and a group fed a FBs contaminated diet (18.6 mg FB1+ FB2/kg feed). A significant increase in the plasma sphinganine/sphingosine ratio in the FBs-treated group (0.21 +/- 0.016) compared to the control (0.14 +/- 0.014) indicated disturbance of the sphingolipid biosynthesis. Furthermore, villus height and crypt depth of the ileum was significantly reduced by FBs. Denaturing gradient gel electrophoresis showed a shift in the microbiota composition in the ileum in the FBs group compared to the control. A reduced presence of low-GC containing operational taxonomic units in ileal digesta of birds exposed to FBs was demonstrated, and identified as a reduced abundance of Candidatus Savagella and Lactobaccilus spp. Quantification of total Clostridium perfringens in these ileal samples, previous to experimental infection, using cpa gene (alpha toxin) quantification by qPCR showed an increase in C. perfringens in chickens fed a FBs contaminated diet compared to control (7.5 +/- 0.30 versus 6.3 +/- 0.24 log10 copies/g intestinal content). After C. perfringens challenge, a higher percentage of birds developed subclinical necrotic enteritis in the group fed a FBs contaminated diet as compared to the control (44.9 +/- 2.22% versus 29.8 +/- 5.46%)

    The Mycotoxin Deoxynivalenol Potentiates Intestinal Inflammation by Salmonella Typhimurium in Porcine Ileal Loops

    Get PDF
    Background and Aims: Both deoxynivalenol (DON) and nontyphoidal salmonellosis are emerging threats with possible hazardous effects on both human and animal health. The objective of this study was to examine whether DON at low but relevant concentrations interacts with the intestinal inflammation induced by Salmonella Typhimurium. Methodology: By using a porcine intestinal ileal loop model, we investigated whether intake of low concentrations of DON interacts with the early intestinal inflammatory response induced by Salmonella Typhimurium. Results: A significant higher expression of IL-12 and TNF alpha and a clear potentiation of the expression of IL-1 beta, IL-8, MCP-1 and IL-6 was seen in loops co-exposed to 1 mu g/mL of DON and Salmonella Typhimurium compared to loops exposed to Salmonella Typhimurium alone. This potentiation coincided with a significantly enhanced Salmonella invasion in and translocation over the intestinal epithelial IPEC-J2 cells, exposed to non-cytotoxic concentrations of DON for 24 h. Exposure of Salmonella Typhimurium to 0.250 mu g/mL of DON affected the bacterial gene expression level of a limited number of genes, however none of these expression changes seemed to give an explanation for the increased invasion and translocation of Salmonella Typhimurium and the potentiated inflammatory response in combination with DON. Conclusion: These data imply that the intake of low and relevant concentrations of DON renders the intestinal epithelium more susceptible to Salmonella Typhimurium with a subsequent potentiation of the inflammatory response in the gut

    "Nested" cryptic diversity in a widespread marine ecosystem engineer: a challenge for detecting biological invasions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecosystem engineers facilitate habitat formation and enhance biodiversity, but when they become invasive, they present a critical threat to native communities because they can drastically alter the receiving habitat. Management of such species thus needs to be a priority, but the poorly resolved taxonomy of many ecosystem engineers represents a major obstacle to correctly identifying them as being either native or introduced. We address this dilemma by studying the sea squirt <it>Pyura stolonifera</it>, an important ecosystem engineer that dominates coastal communities particularly in the southern hemisphere. Using DNA sequence data from four independently evolving loci, we aimed to determine levels of cryptic diversity, the invasive or native status of each regional population, and the most appropriate sampling design for identifying the geographic ranges of each evolutionary unit.</p> <p>Results</p> <p>Extensive sampling in Africa, Australasia and South America revealed the existence of "nested" levels of cryptic diversity, in which at least five distinct species can be further subdivided into smaller-scale genetic lineages. The ranges of several evolutionary units are limited by well-documented biogeographic disjunctions. Evidence for both cryptic native diversity and the existence of invasive populations allows us to considerably refine our view of the native versus introduced status of the evolutionary units within <it>Pyura stolonifera </it>in the different coastal communities they dominate.</p> <p>Conclusions</p> <p>This study illustrates the degree of taxonomic complexity that can exist within widespread species for which there is little taxonomic expertise, and it highlights the challenges involved in distinguishing between indigenous and introduced populations. The fact that multiple genetic lineages can be native to a single geographic region indicates that it is imperative to obtain samples from as many different habitat types and biotic zones as possible when attempting to identify the source region of a putative invader. "Nested" cryptic diversity, and the difficulties in correctly identifying invasive species that arise from it, represent a major challenge for managing biodiversity.</p

    The Whereabouts of an Ancient Wanderer: Global Phylogeography of the Solitary Ascidian Styela plicata

    Get PDF
    Genetic tools have greatly aided in tracing the sources and colonization history of introduced species. However, recurrent introductions and repeated shuffling of populations may have blurred some of the genetic signals left by ancient introductions. Styela plicata is a solitary ascidian distributed worldwide. Although its origin remains unclear, this species is believed to have spread worldwide by travelling on ship's hulls. The goals of this study were to infer the genetic structure and global phylogeography of S. plicata and to look for present-day and historical genetic patterns. Two genetic markers were used: a fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of the nuclear gene Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). A total of 368 individuals for COI and 315 for ANT were sequenced from 17 locations worldwide. The levels of gene diversity were moderate for COI to high for ANT. The Mediterranean populations showed the least diversity and allelic richness for both markers, while the Indian, Atlantic and Pacific Oceans had the highest gene and nucleotide diversities. Network and phylogenetic analyses with COI and ANT revealed two groups of alleles separated by 15 and 4 mutational steps, respectively. The existence of different lineages suggested an ancient population split. However, the geographic distributions of these groups did not show any consistent pattern, indicating different phylogeographic histories for each gene. Genetic divergence was significant for many population-pairs irrespective of the geographic distance among them. Stochastic introduction events are reflected in the uneven distribution of COI and ANT allele frequencies and groups among many populations. Our results confirmed that S. plicata has been present in all studied oceans for a long time, and that recurrent colonization events and occasional shuffling among populations have determined the actual genetic structure of this species
    corecore