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Abstract

Background: Fusarium infection with concurrent production of deoxynivalenol (DON) causes an increasing safety
concern with feed worldwide. This study was conducted to determine the effects of varying levels of DON in diets
on growth performance, serum biochemical profile, jejunal morphology, and the differential expression of nutrients
transporter genes in growing pigs.

Results: A total of twenty-four 60-day-old healthy growing pigs (initial body weight =163 +1.5 kg SE) were
individually housed and randomly assigned to receive one of four diets containing 0, 3, 6 or 12 mg DON/kg
feed for 21 days. Differences were observed between control and the 12 mg/kg DON treatment group with
regards to average daily gain (ADG), although the value for average daily feed intake (ADFI) in the 3 mg/kg
DON treatment group was slightly higher than that in control (P<0.01). The relative liver weight in the 12 mg/kg
DON treatment group was significantly greater than that in the control (P<0.01), but there were no significant
differences in other organs. With regard to serum biochemistry, the values of blood urea nitrogen (BUN),
alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate amino transferase (AST) in the 3
treatment groups were higher than those in the control, and the serum concentrations of L-valine, glycine,
L-serine, and L-glutamine were significantly reduced in the 3 treatment groups, especially in the 12 mg/kg
DON group (P<0.01). Serum total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) were markedly
decreased after exposure to DON contaminated feeds (P<0.01). The villi height was markedly decreased and the
lymphocyte cell numbers markedly increased in the 3 DON contaminated feeds (P<0.01). The mRNA expression levels
of excitatory amino acid transporter-3 (EAAC-3), sodium-glucose transporter-1 (SGLT-1), dipeptide transporter-1
(PepT-1), cationic amino acid transporter-1 (CAT-1) and y'L-type amino acid transporter-1 (LAT-1) in control
were slightly or markedly higher than those in the 3 DON treatment groups.

Conclusions: These results showed that feeds containing DON cause a wide range of effects in a dose-dependent
manner. Such effects includes weight loss, live injury and oxidation stress, and malabsorption of nutrients as a result of
selective regulation of nutrient transporter genes such as EAAC-3, SGLT-1, PepT-1, CAT-1 and LAT-1.
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Background

The trichothecene deoxynivalenol (DON) is a secondary
metabolite mainly produced by the plant pathogens Fu-
sarium graminearum and Fusarium culmorum, to which
human and livestock can be exposed via food and feed
[1]. Fusarium infection of wheat, barley and corn with
concurrent production of DON and other trichothecene
mycotoxins is an increasing food safety concern world-
wide [1, 2]. Many published papers show the toxic ef-
fects of DON on animals mainly impairing immune
system, health status of the gastrointestinal tract and the
brain [1, 3—6]. Some reports suggested that ingestion of
these DON may induce feed refusal, organ damage, in-
creased disease incidence, and malabsorption of nutri-
ents [1, 3, 7-13]. Some papers showed in the in vitro
studies that DON interfere with differentiation of differ-
ent intestinal cell line models [10—14]. In vivo, much at-
tention has been given to the determination of glucose
absorption after DON exposure but only limited studies
have assessed expression of nutrient transporter genes
when feeding functional nutrients to alleviate poisoning
triggered by a single dose of dietary DON exposure [9,
15-22]. DON is effectively absorbed in the upper gastro-
intestinal tract (GIT), i.e. stomach, duodenum and prox-
imal jejunum [23]. It is, therefore, hypothesized that DON
will impair absorption of nutrients including amino acid,
di/tripeptides, and glucose by reducing expression of
genes for transporters of these nutrients especially in the
upper GIT. Duration and amount of DON exposure seem
to be crucial factors for toxic effect on nutrient digestibility
and absorbability as previously shown in swine and cell line
models [23, 24]. However, there has been no systematic in-
vestigation to date of the DON-triggered effects in growth
performance, serum parameters, jejunal morphology, and
in the expression of nutrient transporter genes.

Therefore, the objective of the present study was to investi-
gate the effects of various levels (0 to 12 mg/kg) of dietary
DON challenge on growth performance, serum biochemical
and amino acid profile, jejunal morphology, and the differential
expression of genes for nutrient transporters in growing pigs.

Results

Growth performance

The cumulative performance results of growing pigs are
showed Table 1. There was no significant difference between
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control, 3 mg/kg DON group, and 6 mg/kg DON groups
with regard to average daily gain (ADG), but this value in
12 mg/kg DON groups was significantly lower than those
in the other groups (P <0.05). The average daily feed in-
take (ADFI) was no significant difference between con-
trol and 3 mg/kg DON group, but this value in 6 mg/kg
DON group and 12 mg/kg DON group were significantly
lower than control and 3 mg/kg DON group (P < 0.05).
The 6 mg/kg DON group showed the lowest feed/gain ra-
tio (F/G).

Relative organ weights

Table 2 shows the effects of dietary DON-contaminated
diet on relative organ weights in 60-to 88-day-old pigs.
There were no significant differences among the four groups
with regard to the spleen, kidney and heart (P>0.05). How-
ever, the relative liver weights in the pigs fed the diets with
3 mg/kg DON and 12 mg/kg DON were higher than con-
trol. No differences were seen among the DON contami-
nated diets.

Serum biochemical parameters and amino acid
concentrations

Table 3 shows effects of three dose DON-contaminated
diet on serum biochemical parameters of pigs from age
60 to 88 days. There was no difference in the concentra-
tions of albumin (ALB), creatinine (CRE) and serum
fasting blood glucose (GLU) between control group and
the DON treatment groups (£>0.05). The blood urea ni-
trogen (BUN) values were similar in the 3 mg/kg DON
and 6 mg/kg DON groups, but values in the 6 mg/kg
DON and 12 mg/kg DON groups were significantly higher
than control (P <0.05). The alkaline phosphatase (ALP)
activities in 12 mg/kg DON group was significantly higher
than in control, 3 mg/kg DON and 6 mg/kg DON groups
(P<0.01). The alanine aminotransferase (ALT) activities
in 6 mg/kg DON group and 12 mg/kg DON group were
significantly higher than control and 3 mg/kg DON group
(P <0.01). The aspartate amino transferase (AST) activities
in 12 mg/kg DON group was significantly higher than
control and 3 mg/kg DON group (P < 0.01).

Table 4 shows effects of 3 dose DON-contaminated diet
on serum amino acid concentrations of pigs from age 60
to 88 days. The L-arginine concentration in 12 mg/kg
DON group was significantly lower than control, 3 mg/kg

Table 1 Growth performance of growing pigs fed with diets deoxynivalenol (DON) -contaminated corn from 60 day to 88 day (n =6)

ltem Control 3 mg/kg DON 6 mg/kg DON 12 mg/kg DON P-value
ADG (g) 4216+984° 4179+517° 3788+ 1276 2365 +30.5° <0.0001
ADFI (g) 10212+17.1° 1043.22 +104.84° 870.1 +19° 596.1 + 48.39¢ <0.0001
F/G (g feed/g gain) 243+0.18 249+032 231+024 2524036 05964

Results are expressed as means + SEM for six animals

ADG: average daily weight gain (g/day), ADFI: average daily feed intake (g/day), F/G: feed/gain ratio
#“Values with different letters within the same row are significantly different (P < 0.05).
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Table 2 Relative organ weights (g/kg BW) of growing pigs fed with diets containing deoxynivalenol (DON) contaminated corn (n = 6)

ltem Control 3 mg/kg DON 6 mg/kg DON 12 mg/kg DON P-value
Heart 053+0.12 054+0.14 05+0.13 0.57+0.14 0.8366
Liver 244+013° 272+012° 274023 281+018° 0.0081
Spleen 0.24+0.03 02+009 0.19+0.02 0.17+£0.09 03393
Kidney 045+ 0.06 05+0.06 047 £0.04 0.53£0.11 0.2701

Results are expressed as means + SEM for six animals

2by/alues with different letters within the same row are significantly different (P < 0.05)

DON group (P<0.01). The L-histidine concentration in
6 mg/kg DON group and 12 mg/kg DON group were sig-
nificantly lower than control (P < 0.05). The L-lysine con-
centration in 12 mg/kg DON group was significantly
lower than control, 3 mg/kg DON group and 6 mg/kg
DON group (P <0.01). The L-threonine concentration in
6 mg/kg DON group and 12 mg/kg DON group were sig-
nificantly lower than control (P<0.01). The concentra-
tions of L-valine, glycine and L-serine in 12 mg/kg DON
group was significantly lower than control and 3 mg/kg
DON group (P<0.01). The L-glutamate concentration in
12 mg/kg DON group was significantly lower than con-
trol, 3 mg/kg DON and 6 mg/kg DON groups (P < 0.01).
The L-tyrosine of concentration in 12 mg/kg DON group
was significantly lower than control and 3 mg/kg DON
groups (P < 0.05). The L-aspartate concentration in 12 mg/
kg DON group was significantly lower than control and
3 mg/kg DON groups (P < 0.05). The L-glutamine concen-
tration in 6 mg/kg group and 12 mg/kg DON group were
significantly lower than control (P<0.01). The L-alanine
concentration in 12 mg/kg DON group were significantly
lower than control and 3 mg/kg DON groups (P < 0.01).

Serum hormonal components

Table 5 shows dietary effects on serum growth hormone
(GH), insulin-like growth factor 1 (IGF1), total super-
oxide dismutase (T-SOD), haptoglobin (HP) and gluta-
thione peroxidase (GSH-Px) concentrations. The serum
activity of GH in 12 mg/kg DON group was significantly

lower than 3 mg/kg DON group (P<0.05). The serum
activity of IGF1 in control group and 3 mg/kg DON group
were significantly lower than those 2 groups (P<0.01).
The serum activity of T-SOD in 12 mg/kg DON group
were significantly lower than control and 3 mg/kg DON
group (P<0.01). The HP in control group and 3 mg/kg
DON group were significantly lower than 6 mg/kg DON
group and 12 mg/kg DON group (P < 0.01). The GSH-Px
in 6 mg/kg DON group and 12 mg/kg DON group were
significantly lower than control and 3 mg/kg DON group
(P<0.01).

Jejunal morphology

No abnormal morphology was observed for the jejunal
morphology in the control (Fig. 1). Table 6 shows the je-
junal morphology changes of growing pigs fed with 3
dose DON-contaminated diet. The villus height of the
jejunal in control and 3 mg/kg DON group were signifi-
cantly higher than 6 mg/kg DON group and 12 mg/kg
DON group (P <0.05). The crypt depth of the jejunal was
no significant differences among the 4 groups. The lympho-
cyte number of the jejunal in control was significantly lower
than 12 mg/kg DON group (P < 0.05).

mRNA expression of nutrients transporter genes

Eight critical intestinal amino acid transporters (excitatory
amino acid transporter-3 (EAAT-3), b%*amino acid trans-
porter (B®*AT), sodium-glucose transporter-1 (SGLT-1),
glucose transporter-2 (GLUT-2), dipeptide transporter-1

Table 3 Serum biochemical chemical parameters of growing pigs fed with diets containing Deoxynivalenol (DON)-contaminated

corn (n=6)

ltem Control 3 mg/kg DON 6 mg/kg DON 12 mg/kg DON P-value
ALB (g/L) 3516 +3.46 3288+5.15 2895 +3.21 266+875 0.0644
BUN (mmol/L) 528+051° 574+0.84%° 6.82 +0.72°¢ 7.1 4088 00011

GLU (mmol/L) 7.93 +0.94 806+ 103 742 %059 758+ 153 07135
CRE (mmol/L) 4823+575 5209+824 5339+87 49354558 05878
ALP (U/L) 7423 +343° 84091 + 164.3° 9386+ 9837 12369+ 232.2° 0.0001

ALT (U/L) 56.67 +7.23° 5499 +925° 8092 +7.38" 86+ 11.68° <0.0001
AST (U/L) 9347 +£894° 111.77 +1876%° 13384+ 1063¢ 14034 + 1542° <0.0007

Results are expressed as means + SEM for six animals

ALB: albumin, BUN: blood urea nitrogen, GLU: glucose, CRE: creatinine, ALP: alkaline phosphatase, ALT: alanine aminotransferase, AST: aspartate aminotransferase
Values with different letters within the same row are significantly different (P < 0.05)
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Table 4 Serum amino acid concentrations of growing pigs fed with diets Deoxynivalenol (DON)-contaminated corn (n = 6)

ltem Control 3 mg/kg DON 6 mg/kg DON 12 mg/kg DON P-value
L-arginine 153.36 + 25.32° 162.87 +19.74° 12882 + 25.16*° 100.58 + 21.64° 0.0007
L-histidine 8726+ 1261° 7418 +11.53*° 60.17 + 15.29° 62.86+ 19.25° 0.0204
L-isoleucine 12253 +1925° 11864 +15.82° 10073 +17.79*° 8528+ 11.81° 00028
L-leucine 18326 £ 27.16 185.32 +20.31 162.58 + 14.63 162.15+27.38 0.1746
L-lysine 150.03 + 18.25° 138.74 + 12.69° 139.31 + 23.64° 102.98 +21.83° 0.0028
L-methionine 10529+ 18,61 90.78+17.8 93.92 +£20.51 82.83 +£2836 03715
L-phenylalanine 89.73+10.12 94.89 £23.75 7093 +19.2 71.73+£1828 0.0766
L-threonine 15807 +29.71° 12873 +11.83*° 11839 +23.7° 10572 +1832° 0.0037
L-tryptophan 12896 + 23.98 13726 +12.82 12192 +10.26 117.29+9.96 0.1575
L-valine 169.38 +10.71° 152.77 + 1689°*° 129.19 +17.25°¢ 11062 +21.25¢ <0.0001
Glycine 27949 +20.19° 205.01 + 24.75° 172.96 + 26.61°¢ 152,84 +16.97¢ <0.0001
L-serine 196.18 + 24.13%° 22103 +17.11° 162.2+10.29°¢ 15165+ 29.57¢ <0.0001
L-glutamate 260.25 + 20.46° 23282 +1852°P 2187142239 131.39 +32.05¢ <0.0001
L-tyrosine 102.93 + 15.39*° 112.25+8.28° 105.19 + 18270 81.59+2137° 0.0258
L-asparagine 7221 £9.65 79.23 £19.07 59.74+7.57 60.93 +11.94 0.0458
L-aspartate 682 +1238° 65.84 +12.53° 54.75+ 15.56*° 4199 +14.7° 0.0144
L-glutamine 351.92 +27.78° 302.58 +29.43%F 27482 +31.84° 251,02 +42.75° 0.0003
L-cysteine (free) 119.27 +£13.29 131.59+ 2598 12084 +23.17 10635+ 17.01 02374
L-alanine 39296 +41.12° 355.29 + 46,08° 317,84 +6558°P 27012 +5095° 0.0038
L-proline 86.25+15.79 7086 £ 21.52 68.63 +9.82 599+2276 0.1227

Values are pmol/l. Serum amino acid levels were determined by HPLC Ultimate 3000 and 3200 Q TRAP LC-MS/MS. Results are expressed as means + SEM for

six animals

Values with different letters within the same row are significantly different (P < 0.05)

(PepT-1), Na*-dependent neutral amino acid exchanger-2
(ASCT-2), cationic amino acid transporter-1 (CAT-1) and
y'L-type amino acid transporter-1 (LAT-1)) mRNA ex-
pressions were tested at the end of feeding, and the results
were shown in the Table 7. The mRNA expressions level
of the EAAT3 in control was significantly higher than in
the 3 DON treatment groups (P<0.01). The mRNA ex-
pression levels of the B>*AT, GLUT-2 and ASCT-2 were
no significantly different among the 4 groups. The mRNA
expressions level of the SGLT-1 in control and 3 mg/kg
DON group were significantly higher than 12 mg/kg DON
group (P<0.01). The mRNA expressions level of the
PepT-1 in 3 mg/kg DON group was significantly higher
than 6 mg/kg DON group and 12 mg/kg DON group

(P<0.01). The mRNA expressions level of the CAT-1
and LAT-1 in control and 3 mg/kg DON group were sig-
nificantly higher than 6 mg/kg DON group and 12 mg/kg
DON group (P < 0.01).

Discussion

DON is a common contaminant of cereal crops like wheat,
barley, corn and oats and of high importance in food in-
dustry, and increasingly a food safety issue problem
worldwide. Understanding of variable DON toxicology also
requires the systematic combination of growth perform-
ance, serum biochemical profile, jejunal morphology, es-
pecially for the expression different nutrient transporter
genes when pigs are exposed to different doses of DON

Table 5 Serum hormonal characters of growing pigs fed with diets containing Deoxynivalenol (DON)-contaminated corn (n = 6)

[tem Control 3 mg/kg DON 6 mg/kg DON 12 mg/kg DON P-value
GH (ng/ml) 2901 +0887° 2986 +4.13° 2599 +0.647P 24,03 + 4.55° 00145
IGF1 (pg/ml) 921842517 9045 +5.02° 81.03+262° 8047 + 647° 0.0001

T-SOD (U/ml) 1175+626° 10088 + 14.24°° 8448 +897°¢ 7994 +1562° <0.0001
HP (ug/ml) 887 +195° 1026 +1.39° 1342+ 1.02° 1371+ 1.04° <0.0001
GSH-Px (U/ml) 34247 + 147 5° 338838+ 294.5° 2967.3 +1244° 25213 +3346° <0.0007

Results are expressed as means + SEM for six animals

GH: growth hormone, IGF1: insulin-like growth factor 1, T-SOD: total superoxide dismutase, HP: haptoglobin, GSH-Px: glutathione peroxidase
Values with different letters within the same row are significantly different (P < 0.05)
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Fig. 1 The Jejunal morphology (HE x 100) changes of in growing pigs fed with three different dose Deoxynivalenol (DON) contaminated diet.

Pigs in the control group (Panel 1) and 6 mg/kg DON group (Panel 3) were fed a DON uncontaminated diet and a 6 mg/kg DON contaminated
diet, respectively. Pigs in the 3 mg/kg DON (Panel 2) and 12 mg/kg DON group (Panel 4) were fed a 3 mg/kg DON contaminated diet and a

12 mg/kg DON contaminated diet, respectively. The scale bars in Fig. 1 represent 100 um
A

and coherent responses on animal or human health. Con-
sidering that the gastrointestinal tract and the immune
system of pigs are not vastly different that of humans, the
pig can be regarded as a good model that can be applied
to humans [25]. In the present study when pigs were fed
3 dose DON-containing diets, especially significantly in
12 mg/kg DON group compared with other 3 groups (P <
0.01). Consistent with previous studies examining the im-
pact of dietary DON, feed intake was significantly reduced
in a dose-dependent manner (Table 1) [18, 26—-34]. This
finding supports the hypothesis that the adverse effects of
DON contaminated diets on growth performance of
growing pigs is primarily caused by depressing the volun-
tary feed intake [34—40].

In the present study, the relative liver weight in the
12 mg/kg DON treatment group was significantly greater
than that in the control (P<0.01), but there were no sig-
nificant differences in other organs (Table 2). The report
demonstrated that there were no changes in organ weights
with the use of DON concentrations ranging from 750 to

3000 pg/kg [39]. It is not consistent with Chaytor and co-
workers, which analyses the effect of the combination of
DON and aflatoxins on the weights of internal organs,
and found no changes in the weights of the liver, kidney
or spleen [7]. The organ weights related to live weight
seem to be more appropriate for interpreting the DON ef-
fects. A possible explanation for discrepancies between
this latter study and our present study could be that the
effect of DON on relative organ weights are dependent on
the age of pigs, duration of exposure of pigs to DON and
the dose of DON [35].

The serum levels of ALB, BUN, GLU, CRE, ALP, ALT
and AST were tested as a reflection of the metabolism
and visceral organ status of pigs (Table 3). There was no
difference in ALB levels, CRE level and GLU level be-
tween control and 3 DON treatment groups (P>0.05). It
is consistent with previous result showing that dietary
exposure to DON has no significant effect on plasma
protein concentrations (total protein, albumin and fi-
brinogen) [41], however, and it is not consistent with

Table 6 The Jejunal morphology changes of growing pigs fed with diets Deoxynivalenol (DON)-contaminated corn (n = 6)

[tem Control 3 mg/kg DON 6 mg/kg DON 12 mg/kg DON P-value
Villus height (M) 311.7+269° 2963 +33.1° 2905 + 26.2°° 2599+ 19.8° 0024
Crypt depth (M) 1199+ 164 1302+238 1426+ 283 1486+ 26 02
Goblet cell number 1517 +293° 12,67 +2.88°° 105 +2.74° 1217 +454%° 0.147
Lymphocyte number 115+343° 1317 +355% 1522+ 345 1733 +269° 0.034

Results are expressed as means + SEM for six animals

2byalues with different letters within the same row are significantly different (P < 0.05)
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Table 7 The intestinal nutrients transporter genes of growing pigs fed with Deoxynivalenol (DON)-contaminated corn (n = 6)

ltem Control 3 mg/kg DON 6 mg/kg DON 12 mg/kg DON P-value
EAAT-3 1+0.06° 0.84+0.11%° 0.69 +0.17° 061+021° 00011

BO*AT 1+0.15 0.92+021 0.73+0.26 0.75+021 0.1057
SGLT-1 14008 10240137 0.76 +0.15°¢ 0.72+0.23¢ 0.0044
GLUT-2 14008 0.86+0.15 0.78 +0.05 081+025 0.0956
PepT-1 1+012*° 10940132 0.87 +0.09° 0.79+0.16° 00028
ASCT-2 1+0.19 094+0.24 0.98 +0.07 082+02 0.3625
CAT-1 1+0.15° 0.81+0.15° 048 + 0.06° 05+0.18° <0.0001
LAT-1 1+007 0.89 +0.19% 041 +0.06° 046 + 0.09° <0.0001

Results are expressed as means + SEM for six animals

EAAT-3: excitatory amino acid transporter-3, BO*AT: b®*amino acid transporter, SGLT-1: sodium-glucose transporter-1, GLUT-2: glucose transporter-2, PepT-1:
dipeptide transporter-1, ASCT-2: Na*-dependent neutral amino acid exchanger-2, CAT-1: cationic amino acid transporter-1, LAT-1: y*L-type amino acid transporter-1
#"%Values with different letters within the same row are significantly different (P < 0.05)

previous results showing that the decreased albumin
levels have been found in pigs fed a DON-contaminated
diet [36]. The increase in ALP in toxin control reflected
the abnormal excretion of liver metabolites due to DON-
induced systemic toxicity, as described in a previous study
[7]. Serum AST and ALT levels have been reported to be
sensitive indicators of liver injury, since an increase in
these values reflects leakage from injured hepatocytes
[42]. The increase in AST and ALT in the 3 DON treat-
ment groups compared with control indicated that this in-
jured mechanism is triggered after DON diet intake, and
the result was consistent with relative live weights
(Table 2).

Amino acids play important roles as metabolic inter-
mediates in nutrition, immune response, and growth
performance [43]. In the present work, we observed that
concentrations of L-valine, glycine, L-serine, and L-
glutamine in serum were significant decreased by the ex-
posure to DON in feedstuffs, especially significant in
12 mg/kg DON group (P<0.01). It is not consistent with
our previously reports showing that the dietary supple-
mentation with functional nutrients in a single dose
DON exposure [17-19]. A possible reason was the deg-
radation of dietary valine, glycine, glutamine, and serine
by the small intestine is increased by 3 dose DON-
contaminated food, resulting in their deficiencies in the
animals. Increasing evidence shows that these amino
acids are very important for tissue protein synthesis and
metabolic regulation [43—45].

Antioxidant enzymes comprise a major defense system
for preventing organ injury due to excessive quantities
of reactive oxygen species that attack proteins, lipids,
and DNA, such as T-SOD, HP and GSH-Px [46, 47].
Most of the studies have demonstrated that some myco-
toxins can contribute to oxidative stress in cells [48-50].
In the present study, we found that the activity of T-
SOD, GSH-Px in the pig serum was markedly decreased
after exposure to DON contaminated diets, indicating

that DON resulted in oxidative stress in the whole body
(Table 5). For the changes of GH and IGF1 in our study,
only IGF1 levels were markedly decreased after exposure
to DON contaminated diets (Table 5), which is consist-
ent with previously reports [51, 52]. A possible mechan-
ism for the DON-induced IGF-1 suppression involves
the induction of IL-6 and other proinflammatory cyto-
kines, which down-regulates the sensitivity of the GH
receptor via suppressor of cytokines (SOCS)-and signal
transducers and activator of transcription (STAT)-related
mechanisms [53, 54].

The main morphological and histological effects ob-
served included villi flattening and shortening, apical ne-
crosis hyperemia and a reduction in the number of goblet
cells and lymphocytes (Fig. 1 and Table 6). The villi height
reduction indicate that DON resulted in malabsorption
and impairment in the jejunum. Similar changes were ob-
served during in vivo and ex vivo exposure of the intestine
to DON [55, 56]. The toxic effects of DON are mediated
via the inhibition of protein synthesis, thus primarily af-
fecting rapidly dividing cells such epithelial and immune
cells [1, 2]. Thus, the observed villi flattening and shorten-
ing in the jejunum is probably due to the impairment of
cell proliferation as as shown in the Figs. 1. A hyperplasia
of intestinal goblet cells has been observed in piglets and
broiler chicks receiving feed contaminated with 30 and
300 mg FB,/kg feed, respectively [57, 58]. In the present
study, a slightly decrease in the number of goblet cells and
a increase lymphocyte cells were observed (Table 6). Intes-
tinal mucus protects the epithelium against adhesion and
invasion by pathogens, therefore, a increment in the num-
ber of lymphocyte cells can affect the intestinal barrier
function [18, 19, 59, 60].

The absorption of amino acids mainly depends on their
transporters on the membrane of the enterocyte [17, 61].
The mRNA expressions level of the B>*AT, GLUT-2 and
ASCT-2 were no significant differences among the 4 groups,
intestinal protein levels for these transporters need to be
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quantified using western blot techniques [62]. The EAAC-3
is a sodium dependent glutamate transporter that can
transport neutral amino acids, especially glutamate and
cysteine, into intestinal vesicles [63]. The SGLT-1, which
appears gradually on the apical membrane during the dif-
ferentiation of enterocytes, but in mature enterocytes, the
SGLT-1 is the main sugar transport system [64, 65]. In the
piglet small intestine, PepT-1 mainly transports dipeptides
and tripeptides from the digestion of dietary proteins [66].
In addition, CAT-1 transports cationic amino acids in the
kidney and the small intestine, whereas LAT-1 transporter
is a mediator of cationic amino acid efflux from epithelial
cells [67]. In the present study, the mRNA expressions
level of EAAC-3, SGLT-1, PepT-1, CAT-1 and LAT-1 in
control were slightly or significantly higher than in the in
the 3 DON-containing treatment groups. The SGLT-1
data, unlike that of GLUT-2, in the present study was con-
sistent with that of study of Maresca et al. [11]. The EAAC
and CAT-1 data were not consistent with our previous
data obtained with a single dose of DON exposure [18].
Combined with the results of the present study and previ-
ously published data, it is clear that DON can decrease
absorption of glucose, amino acid and peptide by inhi-
biting the mRNA expression of the relevant transporters
[17-19]. However, the mRNA expression of amino acid
transporters in the amino acid absorption ratio did not
strictly correspond to the changes in amino acid intake
[18]. This relationship between amino acid expression and
amino acid intake in DON-contaminated pigs will require
further investigation.

Conclusions

In conclusion, feeding DON-contaminated diets to grow-
ing pigs significantly reduced feed intake resulting in de-
creased growth performance. This further altered serum
biochemical and amino acid profiles, jejunal morphology,
and the mRNA expression of nutrients transporter genes.
Therefore, dietary DON can selectively decreased the
mRNA expression of nutrient transporter genes in grow-

ing pigs.

Methods

Ethics statement

This study was conducted according to the guidelines of
the Declaration of Helsinki and all procedures involving
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animal subjects were approved by the animal welfare com-
mittee of the Institute of Subtropical Agriculture, Chinese
Academy of Sciences (Changsha, Hunan Province, China).

Preparation of mouldy corn

Fusarium graminearum isolate R6576 was obtained from
the College of Plant Science & Technology of Huazhong
Agricultural University (Wuhan, Hubei Province, China).
Preparation, cultivation and collection of fungus from
mouldy corn was performed as described previously
[17-19]. In brief, water was added to a non-contaminated
basal diet until it reached 20 % moisture. The wet feed
was then cultured under ambient conditions (temperature
23-28 °C, humidity 68—85 %) until mildew was clearly ob-
served. Finally, the mold contaminated diet was naturally
air-dried, mixed, and sampled for detection of mycotoxins.
The contents of mycotoxins in mould-contaminated feed
were detected by liquid chromatography as described pre-
viously (Beijing Taileqi, Beijing, China) (Table 8) [17-19].

Pigs management and sample collection

A total of twenty-four 60 day-old healthy growing pigs
(Landrace x Large x Yorkshire) (Zhenghong Co., Ltd., Hunan
Province, China) with a mean body weight of 16.3 + 1.5 kg
were randomly assigned to 4 dietary treatments: (1) a
DON-free diet (control); (2) a diet with 3 mg DON/kg; (3)
a diet with 6 mg DON/kg diet; and (4) a diet with 12 mg
DON/kg of diet. There were 6 pigs per group (three male;
three female). All diets were formulated to meet the
National Research Council (1998) recommended nutrient
requirements for growing pigs. The ingredient and nutri-
ent composition of the diets is as reported by our previ-
ously report [18]. Before the pigs were challenged with
DON, pigs were allowed to acclimatize to the housing con-
ditions with access to a commercial diet with 1.64 % Ala-
nine as isonitrogenous control for 7 days. Pigs had free
access to drinking water and their respective diets through-
out the experimental period. After 21 days of dietary ex-
posure to DON, and immediately after electrical stunning,
the pigs were killed for analysis. Body weight and feed con-
sumption were recorded.

After 21 days of dietary exposure to DON, 5 mL of
blood was collected aseptically in tubes from a jugular
vein 2 h after feeding, centrifuged at 3000 x g for 10 min
at 4 °C to obtain serum samples, and stored at —80 °C

Table 8 Mycotoxin content in contaminated and non-contaminated feed mixture

Catalogue AFB; (ppb) ZEN (ppm) OCH (ppb) FBy (ppm) T-2 (ppm) DON (ppm)
Limit of detection 0.05 0.01 05 0.05 0.1 0.1
Basal feed undetected 0.863 374 0.65 undetected 052
Contaminated feed undetected 0.697 463 0.74 undetected

The contents of mycotoxins in the diet were detected by chromatograph of liquid (Beijing Taileqi, Beijing, China)
AFB;: aflatoxin B;; ZEN: zearalenone; OCH: ochratoxins; DON: deoxynivalenol; FB;: fumonisins B,
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for further analysis. The liver, spleen, kidney and heart
were removed and weighed. The weights were recorded
both as the organ weight and the weight as a percent of
the total body weight. The small intestine was rinsed thor-
oughly with ice-cold physiological saline solution (PBS)
and the jejunum and ileum were dissected.

Analysis of serum biochemical parameters and amino
acid profile
Serum biochemical parameters, including GLU, ALB, ALT,
AST, BUN, CRE, and ALP, were measured using spectro-
photometric kits in accordance with the manufacturer’s
instructions (Nanjing Jiangcheng Biotechnology Institute,
Jiangsu Province, China) and determined using an Automatic
Biochemistry Radiometer (Au640, Olympus).

Twenty amino acids in serum were determined by LC—
MS/MS (HPLC Ultimate3000 and 3200 QTRAP LC-MS/
MS) as described previously [68].

Analysis of serum hormonal components

GH, IGF1, T-SOD, HP and GSH-Px were measured with
the use of ELISA test kits (Beijing Laboratory Biotech Co.,
LTD, China).

Determination of jejunal morphology

Segments (2 cm) of the jejunum were cut and fixed in 4 %
neutral buffered 10 % formalin, processed using routine
histological methods, and mounted in paraffin blocks [17,

Table 9 Primers used for RT-PCR
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69]. Six-micrometer-thick sections were cut and stained
with hematoxylin and eosin (H&E). After dehydration,
embedding, sectioning, and staining, villous height, crypt
depth, and goblet cell and lymphocyte counts were mea-
sured with computer-assisted microscopy (Micrometrics
TM; Nikon ECLIPSE E200, Tokyo, Japan).

Quantification of nutrients transporter genes mRNA

Total RNA was isolated from liquid nitrogen-pulverized
intestine tissue sample with TRIzol regent (Invitrogen,
Carlsbad, CA, USA) and then treated with DNase I (Invitrogen)
according to the manufacturer’s instructions. The quality
of RNA was checked by 1 % agarose gel electrophoresis
after staining with 10 pg/ml ethidium bromide. The RNA
had an ODy45:0Dyg, ratio between 1.8 and 2.0. First-strand
c¢DNA was synthesized with oligo (dT) 20 and Superscript
II reverse transcriptase (Invitrogen, USA).

Primers were designed with Primer 5.0 based on the
c¢DNA sequence of the pig to produce an amplification
product (Table 9). B-actin was used as a housekeeping gene
to normalize target gene transcript levels. Real-time PCR
analysis was performed as described previously [18]. In
brief, 2 pL of cDNA template was added to a total volume
of 25 pL containing 12.5 uL. SYBR Green mix and 1 pmol/l
each of forward and reverse primers. We used the follow-
ing protocol: (i) pre-denaturation (10 s at 95 °C); (ii) ampli-
fication and quantification, repeated 40 cycles (5 s at 95 °C,
20 s at 60 °C); (iii) melting curve (60-99 °C with a heating

Target gene Primer sequence Accession NO. Size (bp)
BOTAT Sense 5'-GCGAGTACCCGTACCTGATG-3’ NM_001110171.1 173
BOTAT Antisense 5'-TTTCACGACGACTTGAGGGG-3’

SGLT-1 Sense 5'-TCATCATCGTCCTGGTCGTCTC-3' M34044.1 144
SGLT-1 Antisense 5'-CTTCTGGGGCTTCTTGAATGTC-3'

GLUT-2 Sense 5'-ATTGTCACAGGCATTCTTGTTAGTCA-3’ NM_001097417 273
GLUT-2 Antisense 5'-TTCACTTGATGCTTCTTCCCTTTC-3’

yLAT-1 Sense 5'-TTCTCTTACTCGGGCTGGGA-3’ EU047705.1 400
yLAT-1 Antisense 5-GCGCCATGAGACCATTGAAC-3’

CAT-1 Sense 5’-GCTGTCATGGCCTTCCTCTT-3’ NM_001012613.1 138
CAT-1 Antisense 5'-CTGGTACACCATGTTCGGCT-3"

GADPH Sense 5-AAGGAGTAAGAGCCCCTGGA-3’ DQ845173 140
GADPH Antisense 5'-TCTGGGATGGAAACTGGAA-3'

EAAT-3 Sense 5’-TTGGGCATTGGGCAGATCAT-3' JF521497.1 187
EAAT-3 Antisense 5'-TCACCATGGTCCTGAAACGG-3’

ASCT-2 Sense 5-CTGGTCTCCTGGATCATGTGG-3' DQ231578.1 172
ASCT-2 Antisense 5'-CAGGAAGCGGTAGGGGTTTT-3’

PepT-1 Sense 5-CAGACTTCGACCACAACGGA-3’ NM_214347.1 99
PepT-1 Antisense 5'-TTATCCCGCCAGTACCCAGA-3’

EAAT-3: excitatory amino acid transporter-3, B®*AT: b%*amino acid transporter, SGLT-1: sodium-glucose transporter-1, GLUT-2: glucose transporter-2, PepT-1: dipeptide

transporter-1, ASCT-2: Na*-dependent neutral amino acid exchanger-2, CAT-1: cationic amino acid transporter-1, LAT-1: y*L-type amino acid transporter-1
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rate of 0.1 °C S-1 and fluorescence measurement). The
relative levels of genes were expressed as a ratio of mRNA
as R =244, The efficiency of real-time PCR was deter-
mined by the amplification of a dilution series of cDNA
according to the equation 10°%°P%, and the results for
target mRNA were consistent with those for $-actin. Nega-
tive controls were created by replacing cDNA with water.

Statistical analysis

Statistical analyses were performed with the SPSS17.0
software (Chicago, IL, USA) [17, 19]. Data were subjected
to one-way analysis of variance followed by the Duncan’s
multiple comparisons test. Values are expressed as the
mean + standard error of the mean (SEM).
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