93 research outputs found

    The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase

    Get PDF
    RbpA is a small non-DNA-binding transcription factor that associates with RNA polymerase holoenzyme and stimulates transcription in actinobacteria, including Streptomyces coelicolor and Mycobacterium tuberculosis. RbpA seems to show specificity for the vegetative form of RNA polymerase as opposed to alternative forms of the enzyme. Here, we explain the basis of this specificity by showing that RbpA binds directly to the principal σ subunit in these organisms, but not to more diverged alternative σ factors. Nuclear magnetic resonance spectroscopy revealed that, although differing in their requirement for structural zinc, the RbpA orthologues from S. coelicolor and M. tuberculosis share a common structural core domain, with extensive, apparently disordered, N- and C-terminal regions. The RbpA-σ interaction is mediated by the C-terminal region of RbpA and σ domain 2, and S. coelicolor RbpA mutants that are defective in binding σ are unable to stimulate transcription in vitro and are inactive in vivo. Given that RbpA is essential in M. tuberculosis and critical for growth in S. coelicolor, these data support a model in which RbpA plays a key role in the σ cycle in actinobacteria

    Identification of host proteins interacting with Toxoplasma gondii GRA15 (TgGRA15) by yeast two-hybrid system

    Get PDF
    Background Toxoplasma gondii, an obligate intracellular protozoan parasite, possesses the remarkable ability to co-opt host cell machinery in order to maintain its intracellular survival. This parasite can modulate signaling pathways of its host through the secretion of polymorphic effector proteins localized in the rhoptry and dense granule organelles. One of such effectors is T. gondii type II-specific dense granule protein 15, TgGRA15, which activates NF-κB pathway. The aim of the present study was to identify the host interaction partner proteins of TgGRA15. Methods We screened a yeast two-hybrid mouse cDNA library using TgGRA15 as the bait. TgGRA15 (PRU strain, Type II) was cloned into the pGBKT7 vector and expressed in the Y2HGold yeast strain. Then, the bait protein expression was validated by western blotting analysis, followed by auto-activation and toxicity tests in comparison with control (Y2HGold yeast strain transformed with empty pGBKT7 vector). Results This screening led to the identification of mouse Luzp1 and AW209491 as host binding proteins that interact with TgGRA15. Luzp1 contains three nuclear localizing signals and is involved in regulating a subset of host non-coding RNA genes. Conclusions These findings reveal, for the first time, new host cell proteins interacting with TgGRA15. The identification of these cellular targets and the understanding of their contribution to the host-pathogen interaction may serve as the foundation for novel therapeutic and prevention strategies against T. gondii infection

    Transcription regulation of the Escherichia coli pcnB gene coding for poly(A) polymerase I: roles of ppGpp, DksA and sigma factors

    Get PDF
    Poly(A) polymerase I (PAP I), encoded by the pcnB gene, is a major enzyme responsible for RNA polyadenylation in Escherichia coli, a process involved in the global control of gene expression in this bacterium through influencing the rate of transcript degradation. Recent studies have suggested a complicated regulation of pcnB expression, including a complex promoter region, a control at the level of translation initiation and dependence on bacterial growth rate. In this report, studies on transcription regulation of the pcnB gene are described. Results of in vivo and in vitro experiments indicated that (a) there are three σ70-dependent (p1, pB, and p2) and two σS-dependent (pS1 and pS2) promoters of the pcnB gene, (b) guanosine tetraphosphate (ppGpp) and DksA directly inhibit transcription from pB, pS1 and pS2, and (c) pB activity is drastically impaired at the stationary phase of growth. These results indicate that regulation of the pcnB gene transcription is a complex process, which involves several factors acting to ensure precise control of PAP I production. Moreover, inhibition of activities of pS1 and pS2 by ppGpp and DksA suggests that regulation of transcription from promoters requiring alternative σ factors by these effectors of the stringent response might occur according to both passive and active models

    Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an intracellular parasite that infects a wide range of warm-blooded species. Rats vary in their susceptibility to this parasite. The Toxo1 locus conferring Toxoplasma resistance in rats was previously mapped to a region of chromosome 10 containing Nlrp1. This gene encodes an inflammasome sensor controlling macrophage sensitivity to anthrax lethal toxin (LT) induced rapid cell death (pyroptosis). We show here that rat strain differences in Toxoplasma infected macrophage sensitivity to pyroptosis, IL-1β/IL-18 processing, and inhibition of parasite proliferation are perfectly correlated with NLRP1 sequence, while inversely correlated with sensitivity to anthrax LT-induced cell death. Using recombinant inbred rats, SNP analyses and whole transcriptome gene expression studies, we narrowed the candidate genes for control of Toxoplasma-mediated rat macrophage pyroptosis to four genes, one of which was Nlrp1. Knockdown of Nlrp1 in pyroptosis-sensitive macrophages resulted in higher parasite replication and protection from cell death. Reciprocally, overexpression of the NLRP1 variant from Toxoplasma-sensitive macrophages in pyroptosis-resistant cells led to sensitization of these resistant macrophages. Our findings reveal Toxoplasma as a novel activator of the NLRP1 inflammasome in rat macrophages

    Histone Deacetylases Play a Major Role in the Transcriptional Regulation of the Plasmodium falciparum Life Cycle

    Get PDF
    The apparent paucity of molecular factors of transcriptional control in the genomes of Plasmodium parasites raises many questions about the mechanisms of life cycle regulation in these malaria parasites. Epigenetic regulation has been suggested to play a major role in the stage specific gene expression during the Plasmodium life cycle. To address some of these questions, we analyzed global transcriptional responses of Plasmodium falciparum to a potent inhibitor of histone deacetylase activities (HDAC). The inhibitor apicidin induced profound transcriptional changes in multiple stages of the P. falciparum intraerythrocytic developmental cycle (IDC) that were characterized by rapid activation and repression of a large percentage of the genome. A major component of this response was induction of genes that are otherwise suppressed during that particular stage of the IDC or specific for the exo-erythrocytic stages. In the schizont stage, apicidin induced hyperacetylation of histone lysine residues H3K9, H4K8 and the tetra-acetyl H4 (H4Ac4) and demethylation of H3K4me3. Interestingly, we observed overlapping patterns of chromosomal distributions between H4K8Ac and H3K4me3 and between H3K9Ac and H4Ac4. There was a significant but partial association between the apicidin-induced gene expression and histone modifications, which included a number of stage specific transcription factors. Taken together, inhibition of HDAC activities leads to dramatic de-regulation of the IDC transcriptional cascade, which is a result of both disruption of histone modifications and up-regulation of stage specific transcription factors. These findings suggest an important role of histone modification and chromatin remodeling in transcriptional regulation of the Plasmodium life cycle. This also emphasizes the potential of P. falciparum HDACs as drug targets for malaria chemotherapy

    Computational Reverse-Engineering of a Spider-Venom Derived Peptide Active Against Plasmodium falciparum SUB1

    Get PDF
    merozoites and invasion into erythrocytes. As PfSUB1 has emerged as an interesting drug target, we explored the hypothesis that PcFK1 targeted PfSUB1 enzymatic activity. culture in a range compatible with our bioinformatics analysis. Using contact analysis and free energy decomposition we propose that residues A14 and Q15 are important in the interaction with PfSUB1.Our computational reverse engineering supported the hypothesis that PcFK1 targeted PfSUB1, and this was confirmed by experimental evidence showing that PcFK1 inhibits PfSUB1 enzymatic activity. This outlines the usefulness of advanced bioinformatics tools to predict the function of a protein structure. The structural features of PcFK1 represent an interesting protein scaffold for future protein engineering

    Transcriptional Analysis of Murine Macrophages Infected with Different Toxoplasma Strains Identifies Novel Regulation of Host Signaling Pathways

    Get PDF
    Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.National Institutes of Health (U.S.) (R01-AI080621)New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases (Developmental Grant AIO57159)Pew Charitable Trusts (Biomedical Scholars Program)Robert A. Swanson Career Development awardThe Knights Templar Eye Foundation, Inc.Pre-Doctoral Grant in the Biological Sciences (5-T32-GM007287-33)Cleo and Paul Schimmel Foundatio

    Impaired Chromatin Remodelling at STAT1-Regulated Promoters Leads to Global Unresponsiveness of Toxoplasma gondii-Infected Macrophages to IFN-γ

    Get PDF
    Intracellular pathogens including the apicomplexan and opportunistic parasite Toxoplasma gondii profoundly modify their host cells in order to establish infection. We have shown previously that intracellular T. gondii inhibit up-regulation of regulatory and effector functions in murine macrophages (MΦ) stimulated with interferon (IFN)-γ, which is the cytokine crucial for controlling the parasites' replication. Using genome-wide transcriptome analysis we show herein that infection with T. gondii leads to global unresponsiveness of murine macrophages to IFN-γ. More than 61% and 89% of the transcripts, which were induced or repressed by IFN-γ in non-infected MΦ, respectively, were not altered after stimulation of T. gondii-infected cells with IFN-γ. These genes are involved in a variety of biological processes, which are mostly but not exclusively related to immune responses. Analyses of the underlying mechanisms revealed that IFN-γ-triggered nuclear translocation of STAT1 still occurred in Toxoplasma-infected MΦ. However, STAT1 bound aberrantly to oligonucleotides containing the IFN-γ-responsive gamma-activated site (GAS) consensus sequence. Conversely, IFN-γ did not induce formation of active GAS-STAT1 complexes in nuclear extracts from infected MΦ. Mass spectrometry of protein complexes bound to GAS oligonucleotides showed that T. gondii-infected MΦ are unable to recruit non-muscle actin to IFN-γ-responsive DNA sequences, which appeared to be independent of stimulation with IFN-γ and of STAT1 binding. IFN-γ-induced recruitment of BRG-1 and acetylation of core histones at the IFN-γ-regulated CIITA promoter IV, but not β-actin was diminished by >90% in Toxoplasma-infected MΦ as compared to non-infected control cells. Remarkably, treatment with histone deacetylase inhibitors restored the ability of infected macrophages to express the IFN-γ regulated genes H2-A/E and CIITA. Taken together, these results indicate that Toxoplasma-infected MΦ are unable to respond to IFN-γ due to disturbed chromatin remodelling, but can be rescued using histone deacetylase inhibitors
    corecore