233 research outputs found

    The Binary Collision-Induced Second Overtone Band of Gaseous Hydrogen: Modelling and Laboratory Measurements

    Get PDF
    Collision-induced absorption (CIA) is the major source of the infrared opacity of dense planetary atmospheres which are composed of nonpolar molecules. Knowledge of CIA absorption spectra of H2-H2 pairs is important for modelling the atmospheres of planets and cold stars that are mainly composed of hydrogen. The spectra of hydrogen in the region of the second overtone at 0.8 microns have been recorded at temperatures of 298 and 77.5 K for gas densities ranging from 100 to 800 amagats. By extrapolation to zero density of the absorption coefficient measured every 10 cm(exp -1) in the spectral range from 11100 to 13800 cm(exp -1), we have determined the binary absorption coefficient. These extrapolated measurements are compared with calculations based on a model that was obtained by using simple computer codes and lineshape profiles. In view of the very weak absorption of the second overtone band, we find the agreement between results of the model and experiment to be reasonable

    Carbon Monoxide in type II supernovae

    Full text link
    Infrared spectra of two type II supernovae 6 months after explosion are presented. The spectra exhibit a strong similarity to the observations of SN 1987A and other type II SNe at comparable epochs. The continuum can be fitted with a cool black body and the hydrogen lines have emissivities that are approximately those of a Case B recombination spectrum. The data extend far enough into the thermal region to detect emission by the first overtone of carbon monoxide. The molecular emission is modeled and compared with that in the spectra of SN 1987A. It is found that the flux in the CO first overtone is comparable to that found in SN 1987A. We argue that Carbon Monoxide forms in the ejecta of all type II SNe during the first year after explosion.Comment: 6 pages, 6 figures, accepted for publications in A&

    Formation of plasma around a small meteoroid: simulation and theory

    Full text link
    High‐power large‐aperture radars detect meteors by reflecting radio waves off dense plasma that surrounds a hypersonic meteoroid as it ablates in the Earth's atmosphere. If the plasma density profile around the meteoroid is known, the plasma's radar cross section can be used to estimate meteoroid properties such as mass, density, and composition. This paper presents head echo plasma density distributions obtained via two numerical simulations of a small ablating meteoroid and compares the results to an analytical solution found in Dimant and Oppenheim (2017a, https://doi.org/10.1002/2017JA023960, 2017b, https://doi.org/10.1002/2017JA023963). The first simulation allows ablated meteoroid particles to experience only a single collision to match an assumption in the analytical solution, while the second is a more realistic simulation by allowing multiple collisions. The simulation and analytical results exhibit similar plasma density distributions. At distances much less than λT, the average distance an ablated particle travels from the meteoroid before a collision with an atmospheric particle, the plasma density falls off as 1/R, where R is the distance from the meteoroid center. At distances substantially greater than λT, the plasma density profile has an angular dependence, falling off as 1/R^2 directly behind the meteoroid, 1/R^3 in a plane perpendicular to the meteoroid's path that contains the meteoroid center, and exp - 1.5(/λ)2/3/ in front of the meteoroid. When used for calculating meteoroid masses, this new plasma density model can give masses that are orders of magnitude different than masses calculated from a spherically symmetric Gaussian distribution, which has been used to calculate masses in the past.This work was supported by NSF grants AGS-1244842 and AGS-1056042. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant ACI-1548562. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper; URL: http://www.tacc.utexas.edu. Simulation-produced data are archived at TACC and available upon request. (AGS-1244842 - NSF; AGS-1056042 - NSF; ACI-1548562 - National Science Foundation)First author draf

    Broadening, shifting, and line asymmetries in the 2←0 band of CO and CO–N2: Experimental results and theoretical calculations

    Get PDF
    We have measured the room temperature, widths, pressure shifts, and line asymmetry coefficients for many transitions of the first overtone band of CO and CO perturbed by N2. role= presentation style= display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative; \u3eN2.N2. The broadening coefficients were obtained with an accuracy of about 1%. The pure CO profiles have been fitted by a Voigt profile while the CO–N2 role= presentation style= display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative; \u3eCO–N2CO–N2 spectral profiles have been fitted with a Lorentz and an empirical line shape model (HCv) role= presentation style= display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative; \u3e(HCv)(HCv) that blends together a hard collision model and a speed-dependent Lorentz profile. In addition to the Voigt, Lorentz, and HCv role= presentation style= display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative; \u3eHCvHCv models, we have added a dispersion profile to account for weak line mixing. The line broadening and shift coefficients are compared to semiclassical calculations employing a variety of intermolecular interactions.The line asymmetry results are compared to line mixing calculations based on the energy corrected sudden (ECS) model.The results indicate that effects other than line mixing also contribute to the measured line asymmetry
    corecore