118 research outputs found

    Detection of arcs in Saturn's F ring during the 1995 Sun ring-plane crossing

    Get PDF
    Observations of the November 1995 Sun crossing of the Saturn's ring-plane made with the 3.6m CFH telescope, using the UHAO adaptive optics system, are presented here. We report the detection of four arcs located in the vicinity of the F ring. They can be seen one day later in HST images. The combination of both data sets gives accurate determinations of their orbits. Semi-major axes range from 140020 km to 140080 km, with a mean of 140060 +- 60 km. This is about 150 km smaller than previous estimates of the F ring radius from Voyager 1 and 2 data, but close to the orbit of another arc observed at the same epoch in HST images.Comment: 8 pages, 3 figures, 1 table, To appear in A&A, for comments : [email protected]

    JWST observations of stellar occultations by solar system bodies and rings

    Full text link
    In this paper we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of solar system bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings, and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun-Earth Lagrange-point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a by-product of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.Comment: This paper is one of a series for a special issue on Solar System observations with JWST in PASP. Accepted 2-Oct-2015. Preprint 30 pages, 5 tables, 8 figure

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57
    corecore