512 research outputs found
Bethe Ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions
We extend the exact periodic Bethe Ansatz solution for one-dimensional bosons
and fermions with delta-interaction and arbitrary internal degrees of freedom
to the case of hard wall boundary conditions. We give an analysis of the ground
state properties of fermionic systems with two internal degrees of freedom,
including expansions of the ground state energy in the weak and strong coupling
limits in the repulsive and attractive regimes.Comment: 27 pages, 6 figures, key reference added, typos correcte
Changing shapes in the nanoworld
What are the mechanisms leading to the shape relaxation of three dimensional
crystallites ? Kinetic Monte Carlo simulations of fcc clusters show that the
usual theories of equilibration, via atomic surface diffusion driven by
curvature, are verified only at high temperatures. Below the roughening
temperature, the relaxation is much slower, kinetics being governed by the
nucleation of a critical germ on a facet. We show that the energy barrier for
this step linearly increases with the size of the crystallite, leading to an
exponential dependence of the relaxation time.Comment: 4 pages, 5 figures. Accepted by Phys Rev Let
Ground-state properties of the attractive one-dimensional Bose-Hubbard model
We study the ground state of the attractive one-dimensional Bose-Hubbard
model, and in particular the nature of the crossover between the weak
interaction and strong interaction regimes for finite system sizes. Indicator
properties like the gap between the ground and first excited energy levels, and
the incremental ground-state wavefunction overlaps are used to locate different
regimes. Using mean-field theory we predict that there are two distinct
crossovers connected to spontaneous symmetry breaking of the ground state. The
first crossover arises in an analysis valid for large L with finite N, where L
is the number of lattice sites and N is the total particle number. An
alternative approach valid for large N with finite L yields a second crossover.
For small system sizes we numerically investigate the model and observe that
there are signatures of both crossovers. We compare with exact results from
Bethe ansatz methods in several limiting cases to explore the validity for
these numerical and mean-field schemes. The results indicate that for finite
attractive systems there are generically three ground-state phases of the
model.Comment: 17 pages, 12 figures, Phys.Rev.B(accepted), minor changes and updated
reference
Island diffusion on metal fcc(100) surfaces
We present Monte Carlo simulations for the size and temperature dependence of
the diffusion coefficient of adatom islands on the Cu(100) surface. We show
that the scaling exponent for the size dependence is not a constant but a
decreasing function of the island size and approaches unity for very large
islands. This is due to a crossover from periphery dominated mass transport to
a regime where vacancies diffuse inside the island. The effective scaling
exponents are in good agreement with theory and experiments.Comment: 13 pages, 2 figures, to be published in Phys. Rev. Let
Kovacs effect and fluctuation-dissipation relations in 1D kinetically constrained models
Strong and fragile glass relaxation behaviours are obtained simply changing
the constraints of the kinetically constrained Ising chain from symmetric to
purely asymmetric. We study the out-of-equilibrium dynamics of those two models
focusing on the Kovacs effect and the fluctuation--dissipation relations. The
Kovacs or memory effect, commonly observed in structural glasses, is present
for both constraints but enhanced with the asymmetric ones. Most surprisingly,
the related fluctuation-dissipation (FD) relations satisfy the FD theorem in
both cases. This result strongly differs from the simple quenching procedure
where the asymmetric model presents strong deviations from the FD theorem.Comment: 13 pages and 7 figures. To be published in J. Phys.
Bethe Ansatz for 1D interacting anyons
This article gives a pedagogic derivation of the Bethe Ansatz solution for 1D
interacting anyons. This includes a demonstration of the subtle role of the
anyonic phases in the Bethe Ansatz arising from the anyonic commutation
relations. The thermodynamic Bethe Ansatz equations defining the temperature
dependent properties of the model are also derived, from which some groundstate
properties are obtained.Comment: 22 pages, two references added, small improvements to tex
Global regulatory developments for clinical stem cell research: diversification and challenges to collaborations
In this article, we explore regulatory developments in stem cell medicine in seven jurisdictions: Japan, China, India, Argentina, Brazil, the USA and the EU. We will show that the research methods, ethical standards and approval procedures for the market use of clinical stem cell interventions are undergoing an important process of global diversification. We will discuss the implications of this process for international harmonization and the conduct of multicountry clinical research collaborations. It will become clear that the increasing heterogeneity of research standards and regulations in the stem cell field presents a significant challenge to international clinical trial partnerships, especially with countries that diverge from the regulatory models that have been developed in the USA and the EU
Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease
OBJECTIVE: The purpose of this study was to evaluate the following: 1) the effects of continuous exercise training and interval exercise training on the end-tidal carbon dioxide pressure (PETCO2) response during a graded exercise test in patients with coronary artery disease; and 2) the effects of exercise training modalities on the association between PETCO2 at the ventilatory anaerobic threshold (VAT) and indicators of ventilatory efficiency and cardiorespiratory fitness in patients with coronary artery disease. METHODS: Thirty-seven patients (59.7 + 1.7 years) with coronary artery disease were randomly divided into two groups: continuous exercise training (n = 20) and interval exercise training (n = 17). All patients performed a graded exercise test with respiratory gas analysis before and after three months of the exercise training program to determine the VAT, respiratory compensation point (RCP) and peak oxygen consumption. RESULTS: After the interventions, both groups exhibited increased cardiorespiratory fitness. Indeed, the continuous exercise and interval exercise training groups demonstrated increases in both ventilatory efficiency and PETCO2 values at VAT, RCP, and peak of exercise. Significant associations were observed in both groups: 1) continuous exercise training (PETCO2VAT and cardiorespiratory fitness r = 0.49; PETCO2VAT and ventilatory efficiency r = -0.80) and 2) interval exercise training (PETCO2VAT and cardiorespiratory fitness r = 0.39; PETCO2VAT and ventilatory efficiency r = -0.45). CONCLUSIONS: Both exercise training modalities showed similar increases in PETCO2 levels during a graded exercise test in patients with coronary artery disease, which may be associated with an improvement in ventilatory efficiency and cardiorespiratory fitness
Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease
OBJECTIVE: The purpose of this study was to evaluate the following: 1) the effects of continuous exercise training and interval exercise training on the end-tidal carbon dioxide pressure (PETCO2) response during a graded exercise test in patients with coronary artery disease; and 2) the effects of exercise training modalities on the association between PETCO2 at the ventilatory anaerobic threshold (VAT) and indicators of ventilatory efficiency and cardiorespiratory fitness in patients with coronary artery disease. METHODS: Thirty-seven patients (59.7 + 1.7 years) with coronary artery disease were randomly divided into two groups: continuous exercise training (n = 20) and interval exercise training (n = 17). All patients performed a graded exercise test with respiratory gas analysis before and after three months of the exercise training program to determine the VAT, respiratory compensation point (RCP) and peak oxygen consumption. RESULTS: After the interventions, both groups exhibited increased cardiorespiratory fitness. Indeed, the continuous exercise and interval exercise training groups demonstrated increases in both ventilatory efficiency and PETCO2 values at VAT, RCP, and peak of exercise. Significant associations were observed in both groups: 1) continuous exercise training (PETCO2VAT and cardiorespiratory fitness r = 0.49; PETCO2VAT and ventilatory efficiency r = -0.80) and 2) interval exercise training (PETCO2VAT and cardiorespiratory fitness r = 0.39; PETCO2VAT and ventilatory efficiency r = -0.45). CONCLUSIONS: Both exercise training modalities showed similar increases in PETCO2 levels during a graded exercise test in patients with coronary artery disease, which may be associated with an improvement in ventilatory efficiency and cardiorespiratory fitness
Atomistic mechanisms for the ordered growth of Co nano-dots on Au(788): comparison of VT-STM experiments and multi-scaled calculations
Hetero-epitaxial growth on a strain-relief vicinal patterned substrate has
revealed unprecedented 2D long range ordered growth of uniform cobalt
nanostructures. The morphology of a Co sub-monolayer deposit on a Au(111)
reconstructed vicinal surface is analyzed by Variable Temperature Scanning
Tunneling Microscopy (VT-STM) experiments. A rectangular array of nano-dots
(3.8 nm x 7.2 nm) is found for a particularly large deposit temperature range
lying from 60 K to 300 K. Although the nanodot lattice is stable at room
temperature, this paper focus on the early stage of ordered nucleation and
growth at temperatures between 35 K and 480 K. The atomistic mechanisms leading
to the nanodots array are elucidated by comparing statistical analysis of
VT-STM images with multi-scaled numerical calculations combining both Molecular
Dynamics for the quantitative determination of the activation energies for the
atomic motion and the Kinetic Monte Carlo method for the simulations of the
mesoscopic time and scale evolution of the Co submonolayer
- …