55 research outputs found

    Mitotic Cdc6 Stabilizes Anaphase-Promoting Complex Substrates by a Partially Cdc28-Independent Mechanism, and This Stabilization Is Suppressed by Deletion of Cdc55

    Get PDF
    Ectopic expression of Cdc6p results in mitotic delay, and this has been attributed to Cdc6p-mediated inhibition of Cdc28 protein kinase and failure to activate the anaphase-promoting complex (APC). Here we show that endogenous Cdc6p delays a specific subset of mitotic events and that Cdc28 inhibition is not sufficient to account for it. The depletion of Cdc6p in G2/M cells reveals that Cdc6p is rate limiting for the degradation of the APC/Cdc20 substrates Pds1p and Clb2p. Conversely, the premature expression of Cdc6p delays the degradation of APC/Cdc20 substrates. Abolishing Cdc6p/Cdc28p interaction does not eliminate the Cdc6-dependent delay of these anaphase events. To identify additional Cdc6-mediated, APC-inhibitory mechanisms, we looked for mutants that reversed the mitotic delay. The deletion of SWE1, RAD24, MAD2, or BUB2 had no effect. However, disrupting CDC55, a PP2A regulatory subunit, suppressed the Cdc6p-dependent delay of Pds1 and Clb2 destruction. A specific role for CDC55 was supported by demonstrating that the lethality of Cdc6 ectopic expression in a cdc16-264 mutant is suppressed by the deletion of CDC55, that endogenous Cdc6p coimmunoprecipitates with the Cdc55 and Tpd3 subunits of PP2A, that Cdc6p/Cdc55p/Tpd3 interaction occurs only during mitosis, and that Cdc6 affects PP2A-Cdc55 activity during anaphase. This demonstrates that the levels and timing of accumulation of Cdc6p in mitosis are appropriate for mediating the modulation of APC/Cdc20

    Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway

    Get PDF
    A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway

    Mutations in escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway

    Get PDF
    A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway

    Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases

    Get PDF
    Altres ajuts: Generalitat de Catalunya, Departament de Salut; Generalitat de Catalunya, Departament d'Empresa i Coneixement i CERCA Program; Ministerio de Ciencia e Innovación; Instituto Nacional de Bioinformåtica; ELIXIR Implementation Studies (CNAG-CRG); Centro de Investigaciones Biomédicas en Red de Enfermedades Raras; Centro de Excelencia Severo Ochoa; European Regional Development Fund (FEDER).Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%)

    Specific deactivation of the mouse mammary tumor virus long terminal repeat promoter upon continuous hormone treatment

    No full text
    8 pages, 6 figures.-- PMID: 9268310 [PubMed].We have studied the transcriptional behavior of the mouse mammary tumor virus long repeat (MMTV-LTR) promoter during a prolonged exposure to glucocorticoids. When integrated into XC-derived cells, MMTV-LTR expression reached its maximum during the first day of dexamethasone treatment, but longer exposure to the hormone resulted in the deactivation of the promoter. In contrast, glucocorticoid-responsive resident genes or MMTV-based transiently transfected plasmids maintained or even increased their mRNA levels during the same period of hormone treatment. An integrated chimeric construct containing the hormone-responsive elements from MMTV-LTR but in different sequence context became also deactivated after a prolonged hormone treatment but with a deactivation kinetics significantly slower than constructs containing the entire, chromatin-positioning MMTV-LTR sequence. The decrease on MMTV-LTR-driven transcription was concomitant with a parallel closure of the MMTV-LTR chromatin and with a decrease in glucocorticoid receptor (GR) concentration in the cell. We concluded that the chromatin-organized MMTV-LTR promoter is particularly sensitive to any decrease on GR levels. We propose that chromatin structure may contribute decisively to the differential expression of MMTV-LTR by two mechanisms: limiting MMTV-LTR accessibility to activating transcription factors and accelerating its shutting down upon a decrease on GR levels.This work has been supported in part by Grant PB92-0051 from the Spanish Ministry of Education and Science (to B. P.) and by l’Association pour la Recherche sur le Cancer, la Fondation pour la Recherche MĂ©dicale, and the Conseil de RĂ©gion Midi-PyrĂ©nnĂ©es (to H. R.-F.). Part of this work has been carried out in the framework of a Germany-Spanish cooperation (HA93-102) and a Consejo Superior de Investigaciones CientĂ­ficas-CNRS exchange.Peer reviewe

    Proteomic characterization of reversible thiol oxidations in proteomes and proteins

    No full text
    SIGNIFICANCE: Reactive oxygen species are produced during normal metabolism in cells, and their excesses have been implicated in protein damage and toxicity, as well as in the activation of signaling events. In particular, hydrogen peroxide participates in the regulation of different physiological processes as well as in the induction of antioxidant cascades, and often the redox molecular events triggering these pathways are based on reversible cysteine (Cys) oxidation. Recent Advances: Increases in peroxides can cause the accumulation of reversible Cys oxidations in proteomes, which may be either protecting thiols from irreversible oxidations or may just be reporters of future toxicity. It is also becoming clear, however, that only a few proteins, such as the bacterial OxyR or peroxidases, can suffer direct oxidation of their Cys residues by hydrogen peroxide and, therefore, may be the only true sensors initiating signaling events. CRITICAL ISSUES: We will in this study describe some of the methodologies used to characterize at the proteome level reversible thiol oxidations, specifically those combining gel-free approaches with mass spectrometry. In the second part of this review, we will summarize some of the electrophoretic and proteomic techniques used to monitor Cys oxidation at the protein level, needed to confirm that a protein contains redox Cys involved in signaling relays, using as examples some of the best characterized redox sensors such as bacterial OxyR or yeast Tpx1/Pap1. FUTURE DIRECTIONS: While Cys oxidations are often detected in proteomes and in specific proteins, major efforts have to be made to establish that they are physiologically relevant. Antioxid. Redox Signal. 26, 329-344This work was supported by the Spanish Ministry of Science and Innovation (BFU2015-68350-P, MINECO/FEDER, UE), and by 2014-SGR-154 from Generalitat de Catalunya (Spain) to E.H. A.D. is recipient of a predoctoral fellowship from Generalitat de Catalunya (Spain). E.H. is recipient of an ICREA Academia Award (Generalitat de Catalunya, Spain

    Spatial sequestration of misfolded proteins as an active chaperone-mediated process during heat stress

    No full text
    Data de publicaciĂł electrĂłnica: 01-01-2021Under thermal stress, different protein quality control (PQC) strategies are activated to maintain an intact proteome, which may vary from one model system to another. Hence thermo-sensitive proteins that lose their active conformation might be refolded with the aid of chaperones or removed by the ubiquitin-proteasome system or the process of autophagy. We have recently developed thermo-sensitive reporters to study PQC in fission yeast and shown the relevance of a third adaptation strategy: the sequestration of misfolded proteins into inclusions which will prevent a rapid degradation and allow the refolding once stress ends. These protein inclusions, protein aggregate centers (PACs), contain a broad spectrum of misfolding/aggregation-prone proteins and chaperones involved in their assembly or dissolution. The chaperone couple Mas5/Ssa2 plays a crucial role in PAC formation, whereas the Hsp104 chaperone promotes their disassembly. The absence of aggregates observed in cells lacking Mas5 could be also explained by the activation of the transcription factor Hsf1 and the induction of chaperone genes, we have excluded this possibility here demonstrating that increased Hsf1 activity and the subsequent overexpression of chaperones do not prevent the assembly of protein aggregates. Protein deposition at certain locations also constitutes a tactic to inactivate proteins temporally. This is the case of Pyp1, the main phosphatase of the stress response kinase Sty1. Upon stress imposition, misfolded Pyp1 is sequestered into cytosolic protein foci while active Sty1 at the nucleus switches on the transcriptional response. In conclusion, we propose that the assembly of aggregation-like foci, PACs in fission yeast, is a crucial PQC strategy during heat stress, and that the Hsp40 chaperone Mas5 is required for PAC assembly and connects physiological and heat-shock triggered PQC.This work is supported by the Ministerio de Ciencia, InnovaciĂłn y Universidades (Spain), PLAN E and FEDER (BFU2016-75116-P to M.C. and PGC2018-093920-B-I00 to E.H.). The Oxidative Stress and Cell Cycle group is also supported by Generalitat de Catalunya (Spain) (2017-SGR-539) and by Unidad de Excelencia MarĂ­a de Maeztu, funded by the AEI (CEX2018-000792-M) (Spain). M.C. is funded by the Ramon y Cajal program (MINECO-RYC2013-12858). E.H. is recipient of an ICREA Academia Award (Generalitat de Catalunya, Spain)

    Proteomic characterization of reversible thiol oxidations in proteomes and proteins

    No full text
    SIGNIFICANCE: Reactive oxygen species are produced during normal metabolism in cells, and their excesses have been implicated in protein damage and toxicity, as well as in the activation of signaling events. In particular, hydrogen peroxide participates in the regulation of different physiological processes as well as in the induction of antioxidant cascades, and often the redox molecular events triggering these pathways are based on reversible cysteine (Cys) oxidation. Recent Advances: Increases in peroxides can cause the accumulation of reversible Cys oxidations in proteomes, which may be either protecting thiols from irreversible oxidations or may just be reporters of future toxicity. It is also becoming clear, however, that only a few proteins, such as the bacterial OxyR or peroxidases, can suffer direct oxidation of their Cys residues by hydrogen peroxide and, therefore, may be the only true sensors initiating signaling events. CRITICAL ISSUES: We will in this study describe some of the methodologies used to characterize at the proteome level reversible thiol oxidations, specifically those combining gel-free approaches with mass spectrometry. In the second part of this review, we will summarize some of the electrophoretic and proteomic techniques used to monitor Cys oxidation at the protein level, needed to confirm that a protein contains redox Cys involved in signaling relays, using as examples some of the best characterized redox sensors such as bacterial OxyR or yeast Tpx1/Pap1. FUTURE DIRECTIONS: While Cys oxidations are often detected in proteomes and in specific proteins, major efforts have to be made to establish that they are physiologically relevant. Antioxid. Redox Signal. 26, 329-344This work was supported by the Spanish Ministry of Science and Innovation (BFU2015-68350-P, MINECO/FEDER, UE), and by 2014-SGR-154 from Generalitat de Catalunya (Spain) to E.H. A.D. is recipient of a predoctoral fellowship from Generalitat de Catalunya (Spain). E.H. is recipient of an ICREA Academia Award (Generalitat de Catalunya, Spain
    • 

    corecore