70 research outputs found

    Mycobacteria clumping increase their capacity to damage macrophages

    Get PDF
    The rough morphotypes of non-tuberculous mycobacteria have been associated with the most severe illnesses in humans. This idea is consistent with the fact that Mycobacterium tuberculosis presents a stable rough morphotype. Unlike smooth morphotypes, the bacilli of rough morphotypes grow close together, leaving no spaces among them and forming large aggregates (clumps). Currently, the initial interaction of macrophages with clumps remains unclear. Thus, we infected J774 macrophages with bacterial suspensions of rough morphotypes of M. abscessus containing clumps and suspensions of smooth morphotypes, primarily containing isolated bacilli. Using confocal laser scanning microscopy and electron microscopy, we observed clumps of at least five rough-morphotype bacilli inside the phagocytic vesicles of macrophages at 3 h post-infection. These clumps grew within the phagocytic vesicles, killing 100% of the macrophages at 72 h post-infection, whereas the proliferation of macrophages infected with smooth morphotypes remained unaltered at 96 h post-infection. Thus, macrophages phagocytose large clumps, exceeding the bactericidal capacities of these cells. Furthermore, proinflammatory cytokines and granuloma-like structures were only produced by macrophages infected with rough morphotypes. Thus, the present study provides a foundation for further studies that consider mycobacterial clumps as virulence factors

    Substrate Specificity of MarP, a Periplasmic Protease Required for Resistance to Acid and Oxidative Stress in Mycobacterium tuberculosis *

    No full text
    The transmembrane serine protease MarP is important for pH homeostasis in Mycobacterium tuberculosis (Mtb). Previous structural studies revealed that MarP contains a chymotrypsin fold and a disulfide bond that stabilizes the protease active site in the substrate-bound conformation. Here, we determined that MarP is located in the Mtb periplasm and showed that this localization is essential for function. Using the recombinant protease domain of MarP, we identified its substrate specificity using two independent assays: positional-scanning synthetic combinatorial library profiling and multiplex substrate profiling by mass spectrometry. These methods revealed that MarP prefers bulky residues at P4, tryptophan or leucine at P2, arginine or hydrophobic residues at P1, and alanine or asparagine at P1'. Guided by these data, we designed fluorogenic peptide substrates and characterized the kinetic properties of MarP. Finally, we tested the impact of mutating MarP cysteine residues on the peptidolytic activity of recombinant MarP and its ability to complement phenotypes of Mtb ΔMarP. Taken together, our studies provide insight into the enzymatic properties of MarP, its substrate preference, and the importance of its transmembrane helices and disulfide bond

    Revisiting the role of phospholipases C in virulence and the lifecycle of Mycobacterium tuberculosis

    Get PDF
    International audienceMycobacterium tuberculosis, the agent of human tuberculosis has developed different virulence mechanisms and virulence-associated tools during its evolution to survive and multiply inside the host. Based on previous reports and by analogy with other bacteria, phospholipases C (PLC) of M. tuberculosis were thought to be among these tools. To get deeper insights into the function of PLCs, we investigated their putative involvement in the intracellular lifestyle of M. tuberculosis, with emphasis on phagosomal rupture and virulence, thereby re-visiting a research theme of longstanding interest. Through the construction and use of an M. tuberculosis H37Rv PLC-null mutant (ΔPLC) and control strains, we found that PLCs of M. tuberculosis were not required for induction of phagosomal rupture and only showed marginal, if any, impact on virulence of M. tuberculosis in the cellular and mouse infection models used in this study. In contrast, we found that PLC-encoding genes were strongly upregulated under phosphate starvation and that PLC-proficient M. tuberculosis strains survived better than ΔPLC mutants under conditions where phosphatidylcholine served as sole phosphate source, opening new perspectives for studies on the role of PLCs in the lifecycle of M. tuberculosis

    Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria

    No full text
    International audienceHorizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was low and no transfer could be observed among classical Mycobacterium tuberculosis complex (MTBC) strains, our study provides the proof of concept for genetic exchange in tubercle bacilli. This outstanding, now experimentally validated phenomenon presumably played a key role in the early evolution of the MTBC toward pathogenicity. Moreover, our findings also provide important information for the risk evaluation of potential transfer of drug resistance and fitness mutations among clinically relevant mycobacterial strains

    Disulfide Bond Formation and ToxR Activity in <em>Vibrio cholerae</em>

    Get PDF
    <div><p>Virulence factor production in <em>Vibrio cholerae</em> is complex, with ToxRS being an important part of the regulatory cascade. Additionally, ToxR is the transcriptional regulator for the genes encoding the major outer membrane porins OmpU and OmpT. ToxR is a transmembrane protein and contains two cysteine residues in the periplasmic domain. This study addresses the influence of the thiol-disulfide oxidoreductase system DsbAB, ToxR cysteine residues and ToxR/ToxS interaction on ToxR activity. The results show that porin production correlates with ToxR intrachain disulfide bond formation, which depends on DsbAB. In contrast, formation of ToxR intrachain or interchain disulfide bonds is dispensable for virulence factor production and in vivo colonization. This study further reveals that in the absence of ToxS, ToxR interchain disulfide bond formation is facilitated, whereat cysteinyl dependent homo- and oligomerization of ToxR is suppressed if ToxS is coexpressed. In summary, new insights into gene regulation by ToxR are presented, demonstrating a mechanism by which ToxR activity is linked to a DsbAB dependent intrachain disulfide bond formation.</p> </div
    • …
    corecore