1,737 research outputs found

    Half-String Approach to Closed String Field Theory

    Get PDF
    In this letter we present an operator formalism for Closed String Field Theory based on closed half-strings. Our results indicate that the restricted polyhedra of the classical non-polynomial string field theory, can be represented as traces of infinite matrices, with operator insertions that reparametrise the half-strings.Comment: 13 pages, Latex, OUTP 93-10-

    N-String Vertices in String Field Theory

    Get PDF
    We give the general form of the vertex corresponding to the interaction of an arbitrary number of strings. The technique employed relies on the ``comma" representation of String Field Theory where string fields and interactions are represented as matrices and operations between them such as multiplication and trace. The general formulation presented here shows that the interaction vertex of N strings, for any arbitrary N, is given as a function of particular combinations of matrices corresponding to the change of representation between the full string and the half string degrees of freedom.Comment: 22 pages, A4-Latex (latex twice), FTUV IFI

    Quark masses in QCD: a progress report

    Full text link
    Recent progress on QCD sum rule determinations of the light and heavy quark masses is reported. In the light quark sector a major breakthrough has been made recently in connection with the historical systematic uncertainties due to a lack of experimental information on the pseudoscalar resonance spectral functions. It is now possible to suppress this contribution to the 1% level by using suitable integration kernels in Finite Energy QCD sum rules. This allows to determine the up-, down-, and strange-quark masses with an unprecedented precision of some 8-10%. Further reduction of this uncertainty will be possible with improved accuracy in the strong coupling, now the main source of error. In the heavy quark sector, the availability of experimental data in the vector channel, and the use of suitable multipurpose integration kernels allows to increase the accuracy of the charm- and bottom-quarks masses to the 1% level.Comment: Invited review paper to be published in Modern Physics Letters

    Witten's cubic vertex in the comma theory (I)

    Get PDF
    It is shown that Witten's interaction 3-vertex is a solution to the comma overlap equations; hence establishing the equivalence between the conventional and the 'comma' formulation of interacting string theory at the level of vertices

    Charm-quark mass from weighted finite energy QCD sum rules

    Get PDF
    The running charm-quark mass in the MSˉ\bar{MS} scheme is determined from weighted finite energy QCD sum rules (FESR) involving the vector current correlator. Only the short distance expansion of this correlator is used, together with integration kernels (weights) involving positive powers of ss, the squared energy. The optimal kernels are found to be a simple {\it pinched} kernel, and polynomials of the Legendre type. The former kernel reduces potential duality violations near the real axis in the complex s-plane, and the latter allows to extend the analysis to energy regions beyond the end point of the data. These kernels, together with the high energy expansion of the correlator, weigh the experimental and theoretical information differently from e.g. inverse moments FESR. Current, state of the art results for the vector correlator up to four-loop order in perturbative QCD are used in the FESR, together with the latest experimental data. The integration in the complex s-plane is performed using three different methods, fixed order perturbation theory (FOPT), contour improved perturbation theory (CIPT), and a fixed renormalization scale μ\mu (FMUPT). The final result is mˉc(3GeV)=1008±26MeV\bar{m}_c (3\, {GeV}) = 1008\,\pm\, 26\, {MeV}, in a wide region of stability against changes in the integration radius s0s_0 in the complex s-plane.Comment: A short discussion on convergence issues has been added at the end of the pape

    Chiral condensates from tau decay: a critical reappraisal

    Get PDF
    The saturation of QCD chiral sum rules is reanalyzed in view of the new and complete analysis of the ALEPH experimental data on the difference between vector and axial-vector correlators (V-A). Ordinary finite energy sum rules (FESR) exhibit poor saturation up to energies below the tau-lepton mass. A remarkable improvement is achieved by introducing pinched, as well as minimizing polynomial integral kernels. Both methods are used to determine the dimension d=6 and d=8 vacuum condensates in the Operator Product Expansion, with the results: {O}_{6}=-(0.00226 \pm 0.00055) GeV^6, and O_8=-(0.0053 \pm 0.0033) GeV^8 from pinched FESR, and compatible values from the minimizing polynomial FESR. Some higher dimensional condensates are also determined, although we argue against extending the analysis beyond dimension d = 8. The value of the finite remainder of the (V-A) correlator at zero momentum is also redetermined: \Pi (0)= -4 \bar{L}_{10}=0.02579 \pm 0.00023. The stability and precision of the predictions are significantly improved compared to earlier calculations using the old ALEPH data. Finally, the role and limits of applicability of the Operator Product Expansion in this channel are clarified.Comment: Replaced versio

    Computing in String Field Theory Using the Moyal Star Product

    Full text link
    Using the Moyal star product, we define open bosonic string field theory carefully, with a cutoff, for any number of string oscillators and any oscillator frequencies. Through detailed computations, such as Neumann coefficients for all string vertices, we show that the Moyal star product is all that is needed to give a precise definition of string field theory. The formulation of the theory as well as the computation techniques are considerably simpler in the Moyal formulation. After identifying a monoid algebra as a fundamental mathematical structure in string field theory, we use it as a tool to compute with ease the field configurations for wedge, sliver, and generalized projectors, as well as all the string interaction vertices for perturbative as well as monoid-type nonperturbative states. Finally, in the context of VSFT we analyze the small fluctuations around any D-brane vacuum. We show quite generally that to obtain nontrivial mass and coupling, as well as a closed strings, there must be an associativity anomaly. We identify the detailed source of the anomaly, but leave its study for future work.Comment: 77 pages, LaTeX. v3: corrections of signs or factors (for a list of corrections see beginning of source file

    Chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner relation

    Get PDF
    The next to leading order chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, δπ\delta_\pi, the value δπ=(6.2,±1.6)\delta_\pi = (6.2, \pm 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate 2GeV=(267±5MeV)3 \simeq \equiv |_{2\,\mathrm{GeV}} = (- 267 \pm 5 MeV)^3. As a byproduct, the chiral perturbation theory (unphysical) low energy constant H2rH^r_2 is predicted to be H2r(νχ=Mρ)=(5.1±1.8)×103H^r_2 (\nu_\chi = M_\rho) = - (5.1 \pm 1.8)\times 10^{-3}, or H2r(νχ=Mη)=(5.7±2.0)×103H^r_2 (\nu_\chi = M_\eta) = - (5.7 \pm 2.0)\times 10^{-3}.Comment: A comment about the value of the strong coupling has been added at the end of Section 4. No change in results or conslusion
    corecore