The running charm-quark mass in the MSˉ scheme is determined from
weighted finite energy QCD sum rules (FESR) involving the vector current
correlator. Only the short distance expansion of this correlator is used,
together with integration kernels (weights) involving positive powers of s,
the squared energy. The optimal kernels are found to be a simple {\it pinched}
kernel, and polynomials of the Legendre type. The former kernel reduces
potential duality violations near the real axis in the complex s-plane, and the
latter allows to extend the analysis to energy regions beyond the end point of
the data. These kernels, together with the high energy expansion of the
correlator, weigh the experimental and theoretical information differently from
e.g. inverse moments FESR. Current, state of the art results for the vector
correlator up to four-loop order in perturbative QCD are used in the FESR,
together with the latest experimental data. The integration in the complex
s-plane is performed using three different methods, fixed order perturbation
theory (FOPT), contour improved perturbation theory (CIPT), and a fixed
renormalization scale μ (FMUPT). The final result is mˉc(3GeV)=1008±26MeV, in a wide region of stability against changes in the
integration radius s0 in the complex s-plane.Comment: A short discussion on convergence issues has been added at the end of
the pape