349 research outputs found

    Equiprobable Go/NoGo auditory ERP components: Adults vs. children

    Get PDF
    Abstract presented at the 23rd Australasian Society for Psychophysiology Conference, 20-22 Nov 2013, Wollongong, Australi

    Effects of articaine on [3H]noradrenaline release from cortical and spinal cord slices prepared from normal and streptozotocin-induced diabetic rats and compared to lidocaine.

    Get PDF
    Since a significant proportion of diabetic patients have clinical or subclinical neuropathy, there may be concerns about the use of local anaesthetics. The present study was designed to determine and compare the effects of articaine, a widely used anaesthetic in dental practice, and lidocaine on the resting and axonal stimulation-evoked release of [3H]noradrenaline ([3H]NA) in prefrontal cortex slices and the release of [3H]NA in spinal cord slices prepared from non-diabetic and streptozocin (STZ)-induced diabetic (glucose level=22.03+/-2.31mmol/l) rats. The peak of allodynia was achieved 9 weeks after STZ-treatment. Articaine and lidocaine inhibited the stimulation-evoked release in a concentration-dependent manner and increased the resting release by two to six times. These effects indicate an inhibitory action of these anaesthetics on Na+- and K+-channels. There was no difference in clinically important nerve conduction between non-diabetic and diabetic rats, as measured by the release of transmitter in response to axonal stimulation. The uptake and resting release of NA was significantly higher in the brain slices prepared from diabetic rats, but there were no differences in the spinal cord. For the adverse effects, the effects of articaine on K+ channels (resting release) are more pronounced compared to lidocaine. In this respect, articaine has a thiophene ring with high lipid solubility, which may present potential risks for some patients

    Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers

    Get PDF
    Nanometric biocompatible Metal-Organic Frameworks (nanoMOFs) are promising candidates for drug delivery. Up to now, most studies have targeted the intravenous route, related to pain and severe complications; whereas nanoMOFs for oral administration, a commonly used non-invasive and simpler route, remains however unexplored. We propose here the biofriendly preparation of a suitable oral nanocarrier based on the benchmarked biocompatible mesoporous iron(III) trimesate nanoparticles coated with the bioadhesive polysaccharide chitosan (CS). This method does not hamper the textural/ structural properties and the sorption/release abilities of the nanoMOFs upon surface engineering. The interaction between the CS and the nanoparticles has been characterized through a combination of high resolution soft X-ray absorption and computing simulation, while the positive impact of the coating on the colloidal and chemical stability under oral simulated conditions is here demonstrated. Finally, the intestinal barrier bypass capability and biocompatibility of CS-coated nanoMOF have been assessed in vitro, leading to an increased intestinal permeability with respect to the noncoated material, maintaining an optimal biocompatibility. In conclusion, the preservation of the interesting physicochemical features of the CS-coated nanoMOF and their adapted colloidal stability and progressive biodegradation, together with their improved intestinal barrier bypass, make these nanoparticles a promising oral nanocarrier

    A comparison of drug transport in pulmonary absorption models: isolated perfused rat lungs, respiratory epithelial cell lines and primary cell culture

    Get PDF
    Purpose: To evaluate the ability of human airway epithelial cell layers and a simple rat isolated perfused lung (IPL) model to predict pulmonary drug absorption in rats in vivo. Method: The permeability of seven compounds selected to possess a range of lipophilicity was measured in two airway cell lines (Calu-3 and 16HBE14o-), in normal human bronchial epithelial (NHBE) cells and using a simple isolated perfused lungs (IPL) technique. Data from the cell layers and ex vivo lungs were compared to published absorption rates from rat lungs measured in vivo. Results: A strong relationship was observed between the logarithm of the in vivo absorption half-life and the absorption half-life in the IPL (r = 0.97; excluding formoterol). Good log-linear relationships were also found between the apparent first-order absorption rate in vivo and cell layer permeability with correlation coefficients of 0.92, 0.93, 0.91 in Calu-3, 16HBE14o- and NHBE cells, respectively. Conclusion: The simple IPL technique provided a good prediction of drug absorption from the lungs, making it a useful method for empirical screening of drug absorption in the lungs. Permeability measurements were similar in all the respiratory epithelial cell models evaluated, with Calu-3 having the advantage for routine permeability screening purposes of being readily availability, robust and easy to culture

    Annex to Quirke et al. Quality assurance in pathology in colorectal cancer screening and diagnosis: annotations of colorectal lesions

    Get PDF
    Multidisciplinary, evidence-based European Guidelines for quality assurance in colorectal cancer screening and diagnosis have recently been developed by experts in a pan-European project coordinated by the International Agency for Research on Cancer. The full guideline document includes a chapter on pathology with pan-European recommendations which take into account the diversity and heterogeneity of health care systems across the EU. The present paper is based on the annex to the pathology chapter which attempts to describe in greater depth some of the issues raised in the chapter in greater depth, particularly details of special interest to pathologists. It is presented here to make the relevant discussion known to a wider scientific audience

    Enhanced Gene Delivery Mediated by Low Molecular Weight Chitosan/DNA Complexes: Effect of pH and Serum

    Get PDF
    This study was designed to systematically evaluate the influence of pH and serum on the transfection process of chitosan-DNA complexes, with the objective of maximizing their efficiency. The hydrodynamic diameter of the complexes, measured by dynamic light scattering (DLS), was found to increase with salt and pH from 243 nm in water to 1244 nm in PBS at pH 7.4 and aggregation in presence of 10% serum. The cellular uptake of complexes into HEK 293 cells assessed by flow cytometry and confocal fluorescent imaging was found to increase at lower pH and serum. Based on these data, new methodology were tested and high levels of transfection (>40%) were achieved when transfection was initiated at pH 6.5 with 10% serum for 8-24 h to maximize uptake and then the media was changed to pH 7.4 with 10% serum for an additional 24-40 h period. Cytotoxicity of chitosan/DNA complexes was also considerably lower than Lipofectamine. Our study demonstrates that the evaluation of the influence of important parameters in the methodology of transfection enables the understanding of crucial physicochemical and biological mechanisms which allows for the design of methodologies maximising transgene expression

    Eyewitness Identification and the Accuracy of the Criminal Justice System

    Get PDF
    This article addresses the problem of eyewitness identification errors that can lead to false convictions of the innocent and false acquittals of the guilty. At the heart of our analysis based on signal detection theory is the separation of diagnostic accuracy—the ability to discriminate between those who are guilty versus those who are innocent—from the consideration of the relative costs associated with different kinds of errors. Application of this theory suggests that current recommendations for reforms have conflated diagnostic accuracy with the evaluation of costs in such a way as to reduce the accuracy of identification evidence and the accuracy of adjudicative outcomes. Our framework points to a revision in recommended procedures and a framework for policy analysis.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Studies on p53, BAX and Bcl-2 protein expression and microsatellite instability in stage III (UICC) colon cancer treated by adjuvant chemotherapy: major prognostic impact of proapoptotic BAX

    Get PDF
    We evaluated the expression patterns of proapoptotic BAX, antiapoptotic Bcl-2 and p53, the proposed upstream effector of these molecules, as potential prognostic markers in UICC stage III colon cancer by immunohistochemical staining. To identify high-frequency microsatellite instability (MSI+) individuals, we performed single-strand conformation polymorphism-based analysis for BAT26. A total of 188 patients who had received 5-fluorouracil (5-FU)-based adjuvant chemotherapy (5-FU/folinic acid or 5-FU/levamisole) were enrolled. Median follow-up was 84.5 months. We found that BAX, Bcl-2 and p53 protein expressions were high or positive in 59, 70 and 50% of 188 cases, respectively. MSI+ tumours were detected in 9% of 174 evaluable patients. BAX or Bcl-2 was correlated with a higher degree of differentiation or left-sided tumours (P=0.01 or P=0.03, respectively); MSI was correlated with right-sided tumours (P<0.0001). In contrast to p53, Bcl-2, or MSI, low BAX, advanced pN category, low grade of differentiation and treatment with 5-FU/levamisole were univariately associated with poorer disease-free survival (DFS) (P=0.0005, P=0.001, P=0.005 and P=0.01, respectively) and poorer overall survival (OS) (P=0.002, P=0.0001, P=0.003 and P=0.02, respectively). Besides pN category and treatment arm, BAX was an independent variable related to both OS and DFS (P=0.003 and P=0.001, respectively). In both univariate and multivariate analysis, the p53−/BAX high in comparison with the p53+/BAX high subset conferred a significantly improved DFS (P=0.03 and P=0.03, respectively) as well as a marginally improved OS (P=0.07 and P=0.08, respectively). BAX protein expression may be of central significance for clinical outcome to 5-FU-based adjuvant chemotherapy in stage III colon cancer, and bivariate analysis of p53/BAX possibly may provide further prognostic evidence
    corecore