308 research outputs found

    Last Glacial Maximum CO2 and δ13C successfully reconciled

    Get PDF
    During the Last Glacial Maximum (LGM, ∼21,000 years ago) the cold climate was strongly tied to low atmospheric CO2 concentration (∼190 ppm). Although it is generally assumed that this low CO2 was due to an expansion of the oceanic carbon reservoir, simulating the glacial level has remained a challenge especially with the additional δ13C constraint. Indeed the LGM carbon cycle was also characterized by a modern-like δ13C in the atmosphere and a higher surface to deep Atlantic δ13C gradient indicating probable changes in the thermohaline circulation. Here we show with a model of intermediate complexity, that adding three oceanic mechanisms: brine induced stratification, stratification-dependant diffusion and iron fertilization to the standard glacial simulation (which includes sea level drop, temperature change, carbonate compensation and terrestrial carbon release) decreases CO2 down to the glacial value of ∼190 ppm and simultaneously matches glacial atmospheric and oceanic δ13C inferred from proxy data. LGM CO2 and δ13C can at last be successfully reconciled

    Biogeochemical impact of tropical instability waves in the equatorial Pacific

    Get PDF
    Tropical Instability Waves (TIW) have been suggested to fertilize the equatorial Pacific in iron leading to enhanced ecosystem activity. Using a coupled dynamical-biogeochemical model, we show that contrary to this suggestion, TIWs induce a decrease of iron concentration by 20% at the equator and by about 3% over the "TIW box" [90°W- 180, 5°N-5°S]. Chlorophyll decreases by 10% at the equator and 1% over the "TIW box". This leads to a decrease of new production up to 10% at the equator (4% over the "TIW box"). TIW-induced horizontal advection brings more iron-depleted water to the equator than it exports iron-rich equatorial water to the north. Additional iron decrease is caused by TIW-induced iron vertical diffusion. These two mechanisms are partly counter balanced by a decrease of iron biological uptake, driven by weaker phytoplankton concentration, and to a lesser extend by TIW- induced iron vertical advection

    An iron cycle cascade governs the response of equatorial Pacific ecosystems to climate change

    Get PDF
    Earth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assumptions regarding the biological cycling of iron, which is the main limiting resource for NPP over large parts of the ocean. In this study, we show that the climate change trends in NPP and the biomass of upper trophic levels are strongly affected by modifying assumptions associated with phytoplankton iron uptake. Using a suite of model experiments, we find 21st century climate change impacts on regional NPP range from −12.3% to +2.4% under a high emissions climate change scenario. This wide range arises from variations in the efficiency of iron retention in the upper ocean in the eastern equatorial Pacific across different scenarios of biological iron uptake, which affect the strength of regional iron limitation. Those scenarios where nitrogen limitation replaced iron limitation showed the largest projected NPP declines, while those where iron limitation was more resilient displayed little future change. All model scenarios have similar skill in reproducing past inter‐annual variations in regional ocean NPP, largely due to limited change in the historical period. Ultimately, projections of end of century upper trophic level biomass change are altered by 50%–80% across all plausible scenarios. Overall, we find that uncertainties in the biological iron cycle cascade through open ocean pelagic ecosystems, from plankton to fish, affecting their evolution under climate change. This highlights additional challenges to developing effective conservation and fisheries management policies under climate change

    Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    Get PDF
    © 2008 Author(s). This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 5 (2008): 597-614, doi:10.5194/bg-5-597-2008Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP) and export production (EP) of particulate organic carbon (POC). Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR) are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation). Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006) with stronger stratification (higher sea surface temperature; SST) being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL) also reproduces the inverse relationship between stratification (SST) and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.This work was supported by the EU grants 511106-2 (FP6 RTD project EUR-OCEANS) and GOCE-511176 (FP6 RTP project CARBOOCEAN) by the European Commission. TLF and FJ also acknowledge support from the Swiss National Science Foundations. SCD and MJB received support from NASA NNG06G127G

    Next-generation ensemble projections reveal higher climate risks for marine ecosystems

    Get PDF
    Projections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario. Regional shifts in the direction of biomass changes highlight the continued and urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change to help support adaptation planning

    Projected 21st century decrease in marine productivity : a multi-model analysis

    Get PDF
    © Authors, 2010. This work is distributed under the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 979-1005, doi: 10.5194/bg-7-979-2010Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.This work was funded by the European Union projects CARBOOCEAN (511176-2) and EUROCEANS (511106-2) and is a contribution to the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 211384. Additional support was received from the Swiss National Science Foundation. SCD acknowledges support from the NASA Ocean Biology and Biogeochemistry Program (NNX07AL80G). LB aknowledges support from the EU Project MEECE (Marine Ecosystem Evolution in a Changing Environnement, grant agreement 212085)

    Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget

    Get PDF
    Based on the 2019 assessment of the Global Carbon Project, the ocean took up on average, 2.5 ± 0.6 PgC yr−1 or 23 ± 5% of the total anthropogenic CO2 emissions over the decade 2009–2018. This sink estimate is based on simulation results from global ocean biogeochemical models (GOBMs) and is compared to data-products based on observations of surface ocean pCO2 (partial pressure of CO2) accounting for the outgassing of river-derived CO2. Here we evaluate the GOBM simulations by comparing the simulated surface ocean pCO2 to observations. Based on this comparison, the simulations are well-suited for quantifying the global ocean carbon sink on the time-scale of the annual mean and its multi-decadal trend (RMSE <20 μatm), as well as on the time-scale of multi-year variability (RMSE <10 μatm), despite the large model-data mismatch on the seasonal time-scale (RMSE of 20–80 μatm). Biases in GOBMs have a small effect on the global mean ocean sink (0.05 PgC yr−1), but need to be addressed to improve the regional budgets and model-data comparison. Accounting for non-mapped areas in the data-products reduces their spread as measured by the standard deviation by a third. There is growing evidence and consistency among methods with regard to the patterns of the multi-year variability of the ocean carbon sink, with a global stagnation in the 1990s and an extra-tropical strengthening in the 2000s. GOBMs and data-products point consistently to a shift from a tropical CO2 source to a CO2 sink in recent years. On average, the GOBMs reveal less variations in the sink than the data-based products. Despite the reasonable simulation of surface ocean pCO2 by the GOBMs, there are discrepancies between the resulting sink estimate from GOBMs and data-products. These discrepancies are within the uncertainty of the river flux adjustment, increase over time, and largely stem from the Southern Ocean. Progress in our understanding of the global ocean carbon sink necessitates significant advancement in modeling and observing the Southern Ocean carbon sink including (i) a game-changing increase in high-quality pCO2 observations, and (ii) a critical re-evaluation of the regional river flux adjustment

    The impacts of ocean acidification on marine trace gases and the implications for atmospheric chemistry and climate

    Get PDF
    Surface ocean biogeochemistry and photochemistry regulate ocean–atmosphere fluxes of trace gases critical for Earth’s atmospheric chemistry and climate. The oceanic processes governing these fluxes are often sensitive to the changes in ocean pH (or pCO2) accompanying ocean acidification (OA), with potential for future climate feedbacks. Here, we review current understanding (from observational, experimental and model studies) on the impact of OA on marine sources of key climate-active trace gases, including dimethyl sulfide (DMS), nitrous oxide (N2O), ammonia and halocarbons. We focus on DMS, for which available information is considerably greater than for other trace gases. We highlight OA-sensitive regions such as polar oceans and upwelling systems, and discuss the combined effect of multiple climate stressors (ocean warming and deoxygenation) on trace gas fluxes. To unravel the biological mechanisms responsible for trace gas production, and to detect adaptation, we propose combining process rate measurements of trace gases with longer term experiments using both model organisms in the laboratory and natural planktonic communities in the field. Future ocean observations of trace gases should be routinely accompanied by measurements of two components of the carbonate system to improve our understanding of how in situ carbonate chemistry influences trace gas production. Together, this will lead to improvements in current process model capabilities and more reliable predictions of future global marine trace gas fluxes

    Correction to “Using altimetry to help explain patchy changes in hydrographic carbon measurements”

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C12099, doi:10.1029/2009JC005835
    corecore