51 research outputs found

    Helicobacter pylori in Thai patients with cholangiocarcinoma and its association with biliary inflammation and proliferation

    Get PDF
    AbstractObjectivesTo investigate whether Helicobacter spp. infection and the cagA of H. pylori are associated with hepatobiliary pathology, specifically biliary inflammation, cell proliferation and cholangiocarcinoma (CCA).MethodsHelicobacter species including H. pylori, H. bilis and H. hepaticus were detected in the specimens using the polymerase chain reaction (PCR). Biliary inflammation of the liver and gallbladders was semi-quantitatively graded on hematoxylin and eosin (H&E)-stained slides. Biliary proliferation was evaluated by immunohistochemistry using the Ki-67-labelling index.ResultsHelicobacter pylori was found in 66.7%, 41.5% and 25.0% of the patients in the CCA, cholelithiasis and control groups (P < 0.05), respectively. By comparison, H. bilis was found in 14.9% and 9.4% of the patients with CCA and cholelithiasis, respectively (P > 0.05), and was absent in the control group. The cagA gene of H. pylori was detected in 36.2% and 9.1% of the patients with CCA and cholelithiasis, respectively (P < 0.05). Among patients with CCA, cell inflammation and proliferation in the liver and gallbladder were significantly higher among those DNA H. pylori positive than negative.ConclusionsThe present findings suggest that H. pylori, especially the cagA-positive strains, may be involved in the pathogenesis of hepatobiliary diseases, especially CCA through enhanced biliary cell inflammation and proliferation

    Opisthorchiasis-Induced Cholangiocarcinoma: How Innate Immunity May Cause Cancer

    Get PDF
    Innate, inflammatory responses towards persistent Opisthorchis viverrini (OV) infection are likely to contribute to the development of cholangiocarcinoma (CCA), a liver cancer that is rare in the West but prevalent in Greater Mekong Subregion countries in Southeast Asia. Infection results in the infiltration of innate immune cells into the bile ducts and subsequent activation of inflammatory immune responses that fail to clear OV but instead may damage local tissues within the bile ducts. Not all patients infected with OV develop CCA, and so tumourigenesis may be dependent on multiple factors including the magnitude of the inflammatory response that is activated in infected individuals. The purpose of this review is to summarize how innate immune responses may promote tumourigenesis following OV infection and if such responses can be used to predict CCA onset in OV-infected individuals. It also hypothesizes on the role that Helicobacterspp., which are associated with liver fluke infections, may play in activation of the innate the immune system to promote tissue damage and persistent inflammation leading to CCA

    The Influence of Parasite Infections on Host Immunity to Co-Infection with Other Pathogens

    Get PDF
    Parasites have evolved a wide range of mechanisms that they use to evade or manipulate the host's immune response and establish infection. The majority of the in vivo studies that have investigated these host-parasite interactions have been undertaken in experimental animals, especially rodents, which were housed and maintained to a high microbiological status. However, in the field situation it is increasingly apparent that pathogen co-infections within the same host are a common occurrence. For example, chronic infection with pathogens including malarial parasites, soil-transmitted helminths, Mycobacterium tuberculosis and viruses such as HIV may affect a third of the human population of some developing countries. Increasing evidence shows that co-infection with these pathogens may alter susceptibility to other important pathogens, and/or influence vaccine efficacy through their effects on host immune responsiveness. Co-infection with certain pathogens may also hinder accurate disease diagnosis. This review summarizes our current understanding of how the host's immune response to infection with different types of parasites can influence susceptibility to infection with other pathogenic microorganisms. A greater understanding of how infectious disease susceptibility and pathogenesis can be influenced by parasite co-infections will enhance disease diagnosis and the design of novel vaccines or therapeutics to more effectively control the spread of infectious diseases

    An In Vitro Anti-Cancer Activity of Ocimum tenuiflorum Essential Oil by Inducing Apoptosis in Human Gastric Cancer Cell Line

    No full text
    Background and Objectives: The effects of Ocimum tenuiflorum essential oil (OTEO) against gastric cancer remain unknown and merit investigation. Materials and Methods: In the present study, the anti-cancer activity of OTEO was examined in a human gastric cancer cell line (AGS). After OTEO treatment, AGS cell viability was determined by an MTT assay, and inhibition of metastasis was determined by cell migration and invasion assays. The expression of apoptosis-related genes in treated AGS cells was determined by qRT-PCR. Results: OTEO significantly decreased AGS cell viability in a dose-dependent manner (IC50 163.42 Âľg/mL) and effectively inhibited cell migration and invasion. Morphological examination demonstrated that OTEO induced cell shrinkage, chromatin condensation, and fragmentation, which are considered typical morphologies of apoptotic cell death. Pro-apoptotic genes (TP53, BAX, and BAK) were significantly up-regulated, while anti-apoptotic genes (BCL-2 and BCL-xL) were significantly down-regulated after treatment with OTEO. In addition, significantly increased gene expression was detected for CASP8, CASP9, and CASP3 in AGS cells exposed to OTEO. GC-MS analysis demonstrated that the major compound of OTEO was caryophyllene (25.85%) and Îą-pinene (11.66%). Conclusions: This in vitro study demonstrates for the first time that OTEO has potential anti-gastric cancer activity and may induce apoptosis in AGS cells through extrinsic and intrinsic pathways

    In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains

    No full text
    In this study, we determined the antibacterial and synergistic activities of the essential oil from Zingiber cassumunar against the extensively drug-resistant (XDR) Acinetobacter baumannii strains. The antibacterial and synergistic properties of the essential oil from Z. cassumunar were examined by agar disc diffusion tests. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated by broth microdilution using the resazurin assay. The in vitro time–kill antibacterial kinetics was analyzed using the plate count technique. We found that the essential oil from Z. cassumunar had antibacterial activity against A. baumannii, with MIC and MBC ranging from 7.00 to 9.24 mg/ml. The essential oil could completely inhibit A. baumannii at 1 h, and coccoid-shaped bacteria were found after treatment. In addition, the essential oil had a synergistic effect when combined with antibiotics, e.g., aminoglycosides, fluoroquinolones, tetracyclines, and folate pathway inhibitors. Thus, the essential oil from Z. cassumunar has strong antibacterial and synergistic activities against XDR A. baumannii, which may provide the basis for the development of a new therapy against drug-resistant bacteria. Keywords: Acinetobacter baumannii, Z. cassumunar, Essential oil, Antibacterial activity, Synergis

    Synergistic Effects of Helicobacter pylori Outer Inflammatory Protein A (oipA) and cag Pathogenicity Island (cag PAI) on Interleukin-1β and Interleukin-8 Gene Expression Levels in Gastric Tissues of Thai Gastroduodenal Patients

    No full text
    Helicobacter pylori outer inflammatory protein A (OipA) has been found to associate with inflammation that is similar to cag pathogenicity island (cagPAI). However, the roles of the presence of oipA gene involving inflammatory responses in vivo need to be clarified. We investigated the association of oipA and cagPAI on the expression of pro-inflammatory cyotkine genes (IL-1β and IL-8) in gastric tissues of Thai gastroduodenal patients. We detected the oipA and cagPAI genes in 35.56% and 68.89%, respectively. The oipA “on” status was mostly found (93.75%) in oipA-positive samples. We observed higher levels of IL-1β and IL-8 gene expression in oipA-positive tissues (with “on” status), similar to those with cagPAI-positive tissues. Interestingly, samples positive for both oipA and cagPAI genes showed significantly higher levels of IL-1β and IL-8 gene expression, when compared with tissues single-positive for either oipA or cagPAI, or double-negative for these two genes. We conclude that H. pylori induces IL-1β and IL-8 gene expression via oipA-dependent mechanisms. Furthermore, synergy in the presence of both oipA and cagPAI genes associated with increased IL-1β and IL-8 gene expression levels in gastric tissues, which suggested that oipA plays a critical role in the H. pylori pathogenesis

    Characterisation of classical enterotoxins, virulence activity, and antibiotic susceptibility of Staphylococcus aureus isolated from Thai fermented pork sausages, clinical samples, and healthy carriers in northeastern Thailand

    No full text
    Contamination by Staphylococcus aureus of food produced from animal sources may have diverse and multifactorial causes that depend on geographical distribution. The goal of this study was to isolate and characterise S. aureus strains from contaminated fermented pork sausage, which is a local food of northeastern Thailand

    Helicobacter pylori cag pathogenicity island (cagPAI) involved in bacterial internalization and IL-8 induced responses via NOD1- and MyD88-dependent mechanisms in human biliary epithelial cells

    Get PDF
    Helicobacter pylori infection has been proposed to be associated with various diseases of the hepatobiliary tract, including cancer of the bile duct epithelial cells (cholangiocarcinoma, CCA). The ability of H. pylori bacteria to cause pathogenic effects in these cells has, however, yet to be investigated. Given that the cag pathogenicity island (cagPAI) is required for H. pylori pathogenesis in gastric epithelial cells, we investigated wild-type and cag mutant strains for their ability to adhere, be internalized and induce pro-inflammatory responses in two bile duct epithelial cell lines derived from cases of CCA. The findings from these experiments were compared to results obtained with the well-characterized AGS gastric cancer cell line. We showed that the cagPAI encodes factors involved in H. pylori internalization in CCA cells, but not for adhesion to these cells. Consistent with previous studies in hepatocytes, actin polymerization and ι5β1 integrin may be involved in H. pylori internalization in CCA cells. As for AGS cells, we observed significantly reduced levels of NF-κB activation and IL-8 production in CCA cells stimulated with either cagA, cagL or cagPAI bacteria, when compared with wild-type bacteria. Importantly, these IL-8 responses could be inhibited via either pre-treatment of cells with antibodies to ι5β1 integrins, or via siRNA-mediated knockdown of the innate immune signaling molecules, nucleotide oligomerization domain 1 (NOD1) and myeloid differentiation response gene 88 (MyD88). Taken together, the data demonstrate that the cagPAI is critical for H. pylori pathogenesis in bile duct cells, thus providing a potential causal link for H. pylori in biliary tract disease

    Molecular mechanisms of resveratrol-induced apoptosis in human pancreatic cancer cells

    No full text
    Resveratrol is a polyphenolic phytoalexin found at high concentrations in grapes, nuts, fruits and red wine with reported anti -carcinogenic effects. In this study, the molecular mechanism of resveratrol -induced apoptosis in human pancreatic cancer (Panc 2.03) cells is investigated. Resveratrol treatment of Panc 2.03 cells results in dose-dependent inhibition of cell growth and cells accumulated at the S phase transition of the cell cycle. The anti -proliferative effect of resveratrol is due to apoptosis as seen by the appearance of chrom atin condensation, nuclear fragmentation, DNA ladder formation and increased annexin V-stained cells. The apoptotic process is induced by decreased Bcl-2 expression concomitant with increased Bax expression, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspase-9 and caspase-3. In addition, resveratrol treatment also decreases the survivin level and increases the apoptosis-inducing factor level in a dose-dependent manner. These results suggest that resveratrol induces apoptosis of Panc 2.03 cells, at least in part through a mitochondrial -associated intrinsic pathway in both caspasedependent and independent manners. The present findings suggest that resveratrol has potential as a chemopreventive agent, and possibly as a therapeutic one against pancreatic cancer
    • …
    corecore