573 research outputs found

    Mesoscale modelling of the CO2 interactions between the surface and the atmosphere applied to the April 2007 CERES field experiment

    Get PDF
    This paper describes a numerical interpretation of the April 2007, CarboEurope Regional Experiment Strategy (CERES) campaign, devoted to the study of the CO2 cycle at the regional scale. Four consecutive clear sky days with intensive observations of CO2 concentration, fluxes at the surface and in the boundary layer have been simulated with the Meso-NH mesoscale model, coupled to ISBA-A-gs land surface model. The main result of this paper is to show how aircraft observations of CO2 concentration have been used to identify surface model errors and to calibrate the CO2 driving component of the surface model. In fact, the comparisons between modelled and observed CO2 concentrations within the Atmospheric Boundary Layer (ABL) allow to calibrate and correct not only the parameterization of respired CO2 fluxes by the ecosystem but also the Leaf Area Index (LAI) of the dominating land cover. After this calibration, the paper describes systematic comparisons of the model outputs with numerous data collected during the CERES campaign, in April 2007. For instance, the originality of this paper is the spatial integration of the comparisons. In fact, the aircraft observations of CO2 concentration and fluxes and energy fluxes are used for the model validation from the local to the regional scale. As a conclusion, the CO2 budgeting approach from the mesoscale model shows that the winter croplands are assimilating more CO2 than the pine forest, at this stage of the year and this case study

    Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL.

    Get PDF
    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment

    Cdkn2a deficiency promotes adipose tissue browning.

    Get PDF
    Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis. We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients. We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression. Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders

    Cognitive control in belief-laden reasoning during conclusion processing: An ERP study

    Get PDF
    Belief bias is the tendency to accept conclusions that are compatible with existing beliefs more frequently than those that contradict beliefs. It is one of the most replicated behavioral findings in the reasoning literature. Recently, neuroimaging studies using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) have provided a new perspective and have demonstrated neural correlates of belief bias that have been viewed as supportive of dual-process theories of belief bias. However, fMRI studies have tended to focus on conclusion processing, while ERPs studies have been concerned with the processing of premises. In the present research, the electrophysiological correlates of cognitive control were studied among 12 subjects using high-density ERPs. The analysis was focused on the conclusion presentation phase and was limited to normatively sanctioned responses to valid–believable and valid–unbelievable problems. Results showed that when participants gave normatively sanctioned responses to problems where belief and logic conflicted, a more positive ERP deflection was elicited than for normatively sanctioned responses to nonconflict problems. This was observed from −400 to −200 ms prior to the correct response being given. The positive component is argued to be analogous to the late positive component (LPC) involved in cognitive control processes. This is consistent with the inhibition of empirically anomalous information when conclusions are unbelievable. These data are important in elucidating the neural correlates of belief bias by providing evidence for electrophysiological correlates of conflict resolution during conclusion processing. Moreover, they are supportive of dual-process theories of belief bias that propose conflict detection and resolution processes as central to the explanation of belief bias

    KAT2B Is Required for Pancreatic Beta Cell Adaptation to Metabolic Stress by Controlling the Unfolded Protein Response.

    Get PDF
    The endoplasmic reticulum (ER) unfolded protein response (UPR(er)) pathway plays an important role in helping pancreatic β cells to adapt their cellular responses to environmental cues and metabolic stress. Although altered UPR(er) gene expression appears in rodent and human type 2 diabetic (T2D) islets, the underlying molecular mechanisms remain unknown. We show here that germline and β cell-specific disruption of the lysine acetyltransferase 2B (Kat2b) gene in mice leads to impaired insulin secretion and glucose intolerance. Genome-wide analysis of Kat2b-regulated genes and functional assays reveal a critical role for Kat2b in maintaining UPR(er) gene expression and subsequent β cell function. Importantly, Kat2b expression is decreased in mouse and human diabetic β cells and correlates with UPR(er) gene expression in normal human islets. In conclusion, Kat2b is a crucial transcriptional regulator for adaptive β cell function during metabolic stress by controlling UPR(er) and represents a promising target for T2D prevention and treatment

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE-Glycated hemoglobin (HbA(1c)), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA(1c). We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA(1c) levels.RESEARCH DESIGN AND METHODS-We studied associations with HbA(1c) in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA(1c) loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.RESULTS-Ten loci reached genome-wide significant association with HbA(1c), including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 x 10(-26)), HFE (rs1800562/P = 2.6 x 10(-20)), TMPRSS6 (rs855791/P = 2.7 x 10(-14)), ANK1 (rs4737009/P = 6.1 x 10(-12)), SPTA1 (rs2779116/P = 2.8 x 10(-9)) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 x 10(-9)), and four known HbA(1c) loci: HK1 (rs16926246/P = 3.1 x 10(-54)), MTNR1B (rs1387153/P = 4.0 X 10(-11)), GCK (rs1799884/P = 1.5 x 10(-20)) and G6PC2/ABCB11 (rs552976/P = 8.2 x 10(-18)). We show that associations with HbA(1c) are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (%HbA(1c)) difference between the extreme 10% tails of the risk score, and would reclassify similar to 2% of a general white population screened for diabetes with HbA(1c).CONCLUSIONS-GWAS identified 10 genetic loci reproducibly associated with HbA(1c). Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA(1c) levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA(1c) Diabetes 59: 3229-3239, 201

    Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase.

    Get PDF
    Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA(Tyr) charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4(3)2(1)2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 A resolution. Complete data sets could be collected and led to structure solution by molecular replacement.journal articleresearch support, non-u.s. gov't2007 Apr 012007 03 30importe

    Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome

    Get PDF
    Reduced gut microbiome diversity is associated with multiple disorders including metabolic syndrome (MetS) features, though metabolomic markers have not been investigated. Our objective was to identify blood metabolite markers of gut microbiome diversity, and explore their relationship with dietary intake and MetS. We examined associations between Shannon diversity and 292 metabolites profiled by the untargeted metabolomics provider Metabolon Inc. in 1529 females from TwinsUK using linear regressions adjusting for confounders and multiple testing (Bonferroni: P < 1.71 × 10−4). We replicated the top results in an independent sample of 420 individuals as well as discordant identical twin pairs and explored associations with self-reported intakes of 20 food groups. Longitudinal changes in circulating levels of the top metabolite, were examined for their association with food intake at baseline and with MetS at endpoint. Five metabolites were associated with microbiome diversity and replicated in the independent sample. Higher intakes of fruit and whole grains were associated with higher levels of hippurate cross-sectionally and longitudinally. An increasing hippurate trend was associated with reduced odds of having MetS (OR: 0.795[0.082]; P = 0.026). These data add further weight to the key role of the microbiome as a potential mediator of the impact of dietary intake on metabolic status and health

    Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi-like features

    Get PDF
    Sim1 haploinsufficiency in mice induces hyperphagic obesity and developmental abnormalities of the brain. In humans, abnormalities in chromosome 6q16, a region that includes SIM1, were reported in obese children with a Prader-Willi–like syndrome; however, SIM1 involvement in obesity has never been conclusively demonstrated. Here, SIM1 was sequenced in 44 children with Prader-Willi–like syndrome features, 198 children with severe early-onset obesity, 568 morbidly obese adults, and 383 controls. We identified 4 rare variants (p.I128T, p.Q152E, p.R581G, and p.T714A) in 4 children with Prader-Willi–like syndrome features (including severe obesity) and 4 other rare variants (p.T46R, p.E62K, p.H323Y, and p.D740H) in 7 morbidly obese adults. By assessing the carriers’ relatives, we found a significant contribution of SIM1 rare variants to intra-family risk for obesity. We then assessed functional effects of the 8 substitutions on SIM1 transcriptional activities in stable cell lines using luciferase gene reporter assays. Three mutations showed strong loss-of-function effects (p.T46R, p.H323Y, and p.T714A) and were associated with high intra-family risk for obesity, while the variants with mild or no effects on SIM1 activity were not associated with obesity within families. Our genetic and functional studies demonstrate a firm link between SIM1 loss of function and severe obesity associated with, or independent of, Prader-Willi–like features.Amélie Bonnefond, Anne Raimondo, Fanny Stutzmann, Maya Ghoussaini, Shwetha Ramachandrappa, David C. Bersten, Emmanuelle Durand, Vincent Vatin, Beverley Balkau, Olivier Lantieri, Violeta Raverdy, François Pattou, Wim Van Hul, Luc Van Gaal, Daniel J. Peet, Jacques Weill, Jennifer L. Miller, Fritz Horber, Anthony P. Goldstone, Daniel J. Driscoll, John B. Bruning, David Meyre, Murray L. Whitelaw and Philippe Frogue
    corecore