287 research outputs found

    Transcriptional Regulation of Sorghum Stem Composition : Key Players Identified Through Co-expression Gene Network and Comparative Genomics Analyses

    Get PDF
    Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined. Validation of the role of several MYB and NAC transcription factors in SCW regulation in Arabidopsis and a few other species has been provided. In this study, we contributed to the recent efforts made in grasses to uncover the mechanisms underlying SCW establishment. We reported updated phylogenies of NAC and MYB in 9 different species and exploited findings from other species to highlight candidate regulators of SCW in sorghum. We acquired expression data during sorghum internode development and used co-expression analyses to determine groups of co-expressed genes that are likely to be involved in SCW establishment. We were able to identify two groups of co-expressed genes presenting multiple evidences of involvement in SCW building. Gene enrichment analysis of MYB and NAC genes provided evidence that while NAC SECONDARY WALL THICKENING PROMOTING FACTOR NST genes and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN gene functions appear to be conserved in sorghum, NAC master regulators of SCW in sorghum may not be as tissue compartmentalized as in Arabidopsis. We showed that for every homolog of the key SCW MYB in Arabidopsis, a similar role is expected for sorghum. In addition, we unveiled sorghum MYB and NAC that have not been identified to date as being involved in cell wall regulation. Although specific validation of the MYB and NAC genes uncovered in this study is needed, we provide a network of sorghum genes involved in SCW both at the structural and regulatory levels

    Do all sporting prizes have a significant positive impact on attendance in a European national football league? Competitive intensity in the French Ligue 1

    Get PDF
    This article investigates the determinants of attendance at French football Ligue 1 matches over the 2008–2011 period, with a focus on the effect of competitive intensity. This is measured by dummies that are functions of the point difference for the home team in relation to the different sporting prizes: title, qualification in UEFA (Union of European Football Associations) club competitions, relegation. The objective is to answer the following question: do all sporting prizes have a significant positive impact on attendance? We specified and estimated a standard attendance equation including 35 explanatory variables of which 9 are related to sporting prizes. The estimations are based on a Tobit model with individual cut-off points to allow for truncation of attendance at the upper bound given by stadia capacity (i.e. sold-out games). 1135 observations are included. Our results show that all sporting prizes have a significant positive impact on attendance. In particular, there is a significant impaact of prizes for potential qualification in the UEFA Europa League which are dependent on the outcome of domestic cups (known only in the last part of season). This research contributes to the optimization of competition format and knowledge on competitive intensity and determinants of attendance. It provides an argument in favor of current sporting prizes for managers in the main European national football leagues

    RSSsite: a reference database and prediction tool for the identification of cryptic Recombination Signal Sequences in human and murine genomes

    Get PDF
    Recombination signal sequences (RSSs) flanking V, D and J gene segments are recognized and cut by the VDJ recombinase during development of B and T lymphocytes. All RSSs are composed of seven conserved nucleotides, followed by a spacer (containing either 12 ± 1 or 23 ± 1 poorly conserved nucleotides) and a conserved nonamer. Errors in V(D)J recombination, including cleavage of cryptic RSS outside the immunoglobulin and T cell receptor loci, are associated with oncogenic translocations observed in some lymphoid malignancies. We present in this paper the RSSsite web server, which is available from the address http://www.itb.cnr.it/rss. RSSsite consists of a web-accessible database, RSSdb, for the identification of pre-computed potential RSSs, and of the related search tool, DnaGrab, which allows the scoring of potential RSSs in user-supplied sequences. This latter algorithm makes use of probability models, which can be recasted to Bayesian network, taking into account correlations between groups of positions of a sequence, developed starting from specific reference sets of RSSs. In validation laboratory experiments, we selected 33 predicted cryptic RSSs (cRSSs) from 11 chromosomal regions outside the immunoglobulin and TCR loci for functional testing

    Active space debris removal by a hybrid propulsion module

    Get PDF
    During the last 40 years, the mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now, most of the cross-sectional area and mass (97% in LEO) is concentrated in about 4600 intact objects, i.e. abandoned spacecraft and rocket bodies, plus a further 1000 operational spacecraft. Simulations and parametric analyses have shown that the most efficient and effective way to prevent the outbreak of a long-term exponential growth of the catalogued debris population would be to remove enough cross-sectional area and mass from densely populated orbits. In practice, according to the most recent NASA results, the active yearly removal of approximately 0.1% of the abandoned intact objects would be sufficient to stabilize the catalogued debris in low Earth orbit, together with the worldwide adoption of mitigation measures. The candidate targets for removal would have typical masses between 500 and 1000 kg, in the case of spacecraft, and of more than 1000 kg, in the case of rocket upper stages. Current data suggest that optimal active debris removal missions should be carried out in a few critical altitude-inclination bands. This paper deals with the feasibility study of a mission in which the debris is removed by using a hybrid propulsion module as propulsion unit. Specifically, the engine is transferred from a servicing platform to the debris target by a robotic arm so to perform a controlled disposal. Hybrid rocket technology for de-orbiting applications is considered a valuable option due to high specific impulse, intrinsic safety, thrust throttle ability, low environmental impact and reduced operating costs. Typically, in hybrid rockets a gaseous or liquid oxidizer is injected into the combustion chamber along the axial direction to burn a solid fuel. However, the use of tangential injection on a solid grain Pancake Geometry allows for more compact design of the propulsion unit. Only explorative tests were performed in the past on this rocket configuration, which appears to be suitable as de-orbiting system of new satellites as well as for direct application on large debris in the framework of a mission for debris removal. The paper describes some critical aspects of the mission with particular concern to the target selection, the hybrid propulsion module, the operations as well as the systems needed to rendezvous and dock with the target, and the disposal strateg

    Academic careers and the valuation of academics. A discursive perspective on status categories and academic salaries in France as compared to the U.S., Germany and Great Britain

    Get PDF
    Academic careers are social processes which involve many members of large populations over long periods of time. This paper outlines a discursive perspective which looks into how academics are categorized in academic systems. From a discursive view, academic careers are organized by categories which can define who academics are (subjectivation) and what they are worth (valuation). The question of this paper is what institutional categorizations such as status and salaries can tell us about academic subject positions and their valuation. By comparing formal status systems and salary scales in France with those in the U.S., Great Britain and Germany, this paper reveals the constraints of institutional categorization systems on academic careers. Special attention is given to the French system of status categories which is relatively homogeneous and restricts the competitive valuation of academics between institutions. The comparison shows that academic systems such as the U.S. which are characterized by a high level of heterogeneity typically present more negotiation opportunities for the valuation of academics. From a discursive perspective, institutional categories, therefore, can reflect the ways in which academics are valuated in the inter-institutional job market, by national bureaucracies or in professional oligarchies

    Microsatellite instability as prognostic marker in bladder tumors: a clinical significance

    Get PDF
    BACKGROUND: Carcinoma of urinary bladder is one of the leading causes of death in India. Successful treatment of bladder cancer depends on the early detection & specific diagnostic approaches. In the present study, microsatellite instability (MSI) has been evaluated as a prognostic marker in patients with superficial urinary bladder cancer in lower urinary tract for determining risk of recurrence. METHODS: A total of 44 patients with bladder tumors diagnosed with Transitional Cell Carcinomas [TCC] from lower urinary tract were selected for the study. Tumors were staged and graded according to AJCC-UICC (1997) classification and patients were followed with cystoscopy as per the protocol. Polymerase chain reaction (PCR) was done to amplify microsatellite sequences at mononucleotide BAT – 26, BAT – 40, TGFβ RII, IGFIIR, hMSH3, BAX and dinucleotide D2S123, D9S283, D9S1851 and D18S58 loci in blood (control) and tumor DNA. PCR products were separated on 8% denaturing polyacrylamide gel and visualized by autoradiography. RESULTS: MSI was observed in 72.7% of tumors at BAT – 26, BAT – 40, D2S123, D9S283, D9S1851 and D18S58 loci. Good association of MSI was seen with tumor stage and grade. MSI – High (instability at > 30% of loci) was frequently observed in high stage (40.6%) and high grade (59.4%) tumors. Of 24 tumors of Ta-T1 stage with different grades, 11 (9/18 high grade and 2/6 low grade tumors) recurred in the mean duration of 36 months. MSI positivity was significantly high in patients who had one or more recurrences (p = 0.02 for high grade and 0.04 for low grade tumors). CONCLUSIONS: MSI may be an independent prognostic marker for assessing risk of recurrence in superficial tumors irrespective of the grade. Further studies on progression would help in stratifying the patients of T1G3 for early cystectomy vs bladder preservation protocol

    A Calculation of the Full Neutrino Phase Space in Cold+Hot Dark Matter Models

    Get PDF
    This paper presents a general-relativistic N-body technique for evolving the phase space distribution of massive neutrinos in linear perturbation theory. The method provides a much more accurate sampling of the neutrino phase space for the HDM initial conditions of N-body simulations in a cold+hot dark matter universe than previous work. Instead of directly sampling the phase space at the end of the linear era, we first compute the evolution of the metric perturbations by numerically integrating the coupled, linearized Einstein, Boltzmann, and fluid equations for all particle species. We then sample the phase space shortly after neutrino decoupling at redshift z=10^9 when the distribution is Fermi-Dirac. To follow the trajectory of each neutrino, we subsequently integrate the geodesic equations for each neutrino in the perturbed background spacetime from z=10^9 to z=13.55, using the linearized metric found in the previous calculation to eliminate discreteness noise. The positions and momenta resulting from this integration represent a fair sample of the full neutrino phase space and can be used as HDM initial conditions for N-body simulations of nonlinear structure evolution in this model. A total of 21 million neutrino particles are used in a 100 Mpc box, with Omega_cdm=0.65, Omega_hdm=0.30, Omega_baryon=0.05, and Hubble constant H_0=50. We find that correlations develop in the neutrino densities and momenta which are absent when only the zeroth-order Fermi-Dirac distribution is considered.Comment: 20 pages, AAS LaTeX v3.0, figures and/or postscript available by anonymous ftp to arcturus.mit.edu, MIT CSR-93-1

    The CERN Neutrino beam to Gran Sasso (NGS)

    Get PDF
    The conceptual technical design of the NGS (CERN neutrino beam to Gran Sasso) facility has been presented in the report CERN 98-02 / INFN-AE/98-05. Additional information, in particular an update on various neutrino beam options for the NGS facility, has been provided in a memorandum to the CERN-SPSC Committee (CERN-SPSC/98-35). In the present report, further improvements on the NGS design and performance, in particular new scenarios for SPS proton cycles for NGS operation and a new version of the NGS "high energy" neutrino beam for nt appearance experiments, are described. This new NGS reference beam is estimated to provide three times more nt events per year than the beam presented in the 1998 report. The radiological aspects of the NGS facility have been re-examined with the new beam design. An updated version of the construction schedule is also presented

    Genome-Wide Data-Mining of Candidate Human Splice Translational Efficiency Polymorphisms (STEPs) and an Online Database

    Get PDF
    Variation in pre-mRNA splicing is common and in some cases caused by genetic variants in intronic splicing motifs. Recent studies into the insulin gene (INS) discovered a polymorphism in a 5' non-coding intron that influences the likelihood of intron retention in the final mRNA, extending the 5' untranslated region and maintaining protein quality. Retention was also associated with increased insulin levels, suggesting that such variants--splice translational efficiency polymorphisms (STEPs)--may relate to disease phenotypes through differential protein expression. We set out to explore the prevalence of STEPs in the human genome and validate this new category of protein quantitative trait loci (pQTL) using publicly available data.Gene transcript and variant data were collected and mined for candidate STEPs in motif regions. Sequences from transcripts containing potential STEPs were analysed for evidence of splice site recognition and an effect in expressed sequence tags (ESTs). 16 publicly released genome-wide association data sets of common diseases were searched for association to candidate polymorphisms with HapMap frequency data. Our study found 3324 candidate STEPs lying in motif sequences of 5' non-coding introns and further mining revealed 170 with transcript evidence of intron retention. 21 potential STEPs had EST evidence of intron retention or exon extension, as well as population frequency data for comparison.Results suggest that the insulin STEP was not a unique example and that many STEPs may occur genome-wide with potentially causal effects in complex disease. An online database of STEPs is freely accessible at http://dbstep.genes.org.uk/

    The porphyrin TmPyP4 unfolds the extremely stable G-quadruplex in MT3-MMP mRNA and alleviates its repressive effect to enhance translation in eukaryotic cells

    Get PDF
    We report that the cationic porphyrin TmPyP4, which is known mainly as a DNA G-quadruplex stabilizer, unfolds an unusually stable all purine RNA G-quadruplex (M3Q) that is located in the 5′-UTR of MT3-MMP mRNA. When the interaction between TmPyP4 and M3Q was monitored by UV spectroscopy a 22-nm bathochromic shift and 75% hypochromicity of the porphin major Soret band was observed indicating direct binding of the two molecules. TmPyP4 disrupts folded M3Q in a concentration-dependent fashion as was observed by circular dichroism (CD), 1D 1H NMR and native gel electrophoresis. Additionally, when TmPyP4 is present during the folding process it inhibits the M3Q RNA from adopting a G-quadruplex structure. Using a dual reporter gene construct that contained the M3Q sequence alone or the entire 5′-UTR of MT3-MMP mRNA, we report here that TmPyP4 can relieve the inhibitory effect of the M3Q G-quadruplex. However, the same concentrations of TmPyP4 failed to affect translation of a mutated construct. Thus, TmPyP4 has the ability to unfold an RNA G-quadruplex of extreme stability and modulate activity of a reporter gene presumably via the disruption of the G-quadruplex
    corecore