1,263 research outputs found

    Inclusive One Jet Production With Multiple Interactions in the Regge Limit of pQCD

    Full text link
    DIS on a two nucleon system in the regge limit is considered. In this framework a review is given of a pQCD approach for the computation of the corrections to the inclusive one jet production cross section at finite number of colors and discuss the general results.Comment: 4 pages, latex, aicproc format, Contribution to the proceedings of "Diffraction 2008", 9-14 Sep. 2008, La Londe-les-Maures, Franc

    Association study of suicidal behavior and affective disorders with a genetic polymorphism in ABCG1, a positional candidate on chromosome 21q22.3

    Get PDF
    The gene that codes for the ABC transporter ABCG1 is located in a chromosomal susceptibility region (21q22.3) for affective disorders. Genetic variations in ABCG1 have been associated with affective disorders in Japanese males. In this study, we investigated the distribution of a G2457A polymorphism in patients with affective disorders, suicide attempters with various psychiatric diagnoses and healthy subjects, We initially found a trend towards a modest association with affective disorders in males (p = 0.046 for allele frequencies and p = 0.046 for AA versus GG). We conducted a replication study with independent patients and controls, There was no association with affective disorders, either in the replication or in the combined group, Furthermore, we found no association with suicidal behavior, These findings do not support the hypothesis that ABCG1 is a susceptibility gene for affective disorders or suicidal behavior. Copyright (C) 2000 S. Karger AG, Basel

    Some Results On Convex Greedy Embedding Conjecture for 3-Connected Planar Graphs

    Full text link
    A greedy embedding of a graph G=(V,E)G = (V,E) into a metric space (X,d)(X,d) is a function x:V(G)→Xx : V(G) \to X such that in the embedding for every pair of non-adjacent vertices x(s),x(t)x(s), x(t) there exists another vertex x(u)x(u) adjacent to x(s)x(s) which is closer to x(t)x(t) than x(s)x(s). This notion of greedy embedding was defined by Papadimitriou and Ratajczak (Theor. Comput. Sci. 2005), where authors conjectured that every 3-connected planar graph has a greedy embedding (possibly planar and convex) in the Euclidean plane. Recently, greedy embedding conjecture has been proved by Leighton and Moitra (FOCS 2008). However, their algorithm do not result in a drawing that is planar and convex for all 3-connected planar graph in the Euclidean plane. In this work we consider the planar convex greedy embedding conjecture and make some progress. We derive a new characterization of planar convex greedy embedding that given a 3-connected planar graph G=(V,E)G = (V,E), an embedding x: V \to \bbbr^2 of GG is a planar convex greedy embedding if and only if, in the embedding xx, weight of the maximum weight spanning tree (TT) and weight of the minimum weight spanning tree (\func{MST}) satisfies \WT(T)/\WT(\func{MST}) \leq (\card{V}-1)^{1 - \delta}, for some 0<Ύ≀10 < \delta \leq 1.Comment: 19 pages, A short version of this paper has been accepted for presentation in FCT 2009 - 17th International Symposium on Fundamentals of Computation Theor

    Characterizing extremal digraphs for identifying codes and extremal cases of Bondy's theorem on induced subsets

    Full text link
    An identifying code of a (di)graph GG is a dominating subset CC of the vertices of GG such that all distinct vertices of GG have distinct (in)neighbourhoods within CC. In this paper, we classify all finite digraphs which only admit their whole vertex set in any identifying code. We also classify all such infinite oriented graphs. Furthermore, by relating this concept to a well known theorem of A. Bondy on set systems we classify the extremal cases for this theorem

    Impact of realistic communications for fast-acting demand side management

    Get PDF
    The rising penetration of intermittent energy resources is increasing the need for more diverse electrical energy resources that are able to support ancillary services. Demand side management (DSM) has a significant potential to fulfil this role but several challenges are still impeding the wide-scale integration of DSM. One of the major challenges is ensuring the performance of the networks that enable communications between control centres and the end DSM resources. This paper presents an analysis of all communications networks that typically participate in the activation of DSM, and provides an estimate for the overall latency that these networks incur. The most significant sources of delay from each of the components of the communications network are identified which allows the most critical aspects to be determined. This analysis therefore offers a detailed evaluation of the performance of DSM resources in the scope of providing real-time ancillary services. It is shown that, using available communications technologies, DSM can be used to provide primary frequency support services. In some cases, Neighbourhood Area Networks (NANs) may add significant delay, requiring careful choice of the technologies deployed

    Bipartite partial duals and circuits in medial graphs

    Full text link
    It is well known that a plane graph is Eulerian if and only if its geometric dual is bipartite. We extend this result to partial duals of plane graphs. We then characterize all bipartite partial duals of a plane graph in terms of oriented circuits in its medial graph.Comment: v2: minor changes. To appear in Combinatoric

    Minimal chordal sense of direction and circulant graphs

    Full text link
    A sense of direction is an edge labeling on graphs that follows a globally consistent scheme and is known to considerably reduce the complexity of several distributed problems. In this paper, we study a particular instance of sense of direction, called a chordal sense of direction (CSD). In special, we identify the class of k-regular graphs that admit a CSD with exactly k labels (a minimal CSD). We prove that connected graphs in this class are Hamiltonian and that the class is equivalent to that of circulant graphs, presenting an efficient (polynomial-time) way of recognizing it when the graphs' degree k is fixed

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)

    Ground-state energy of H-: a critical test of triple basis sets

    Get PDF
    We report an improved variational upper bound for the ground state energy of H- using Hylleraaslike wave functions in the form of a triple basis set having three distinct distance scales. The extended precision DQFUN of Bailey, allowing for 70 decimal digit arithmetic, is implemented to retain sufficient precision. Our result exceeds the previous record [A. M. Frolov, Euro. J. Phys. D 69, 132 (2015)], indicating that the Hylleraas triple basis set exhibits comparable convergence to the widely used pseudorandom all-exponential basis sets, but the numerical stability against roundoff error is much better. It is argued that the three distance scales have a clear physical interpretation. The new variational bound is -0.527 751 016 544 377 196 590 814 469 a.u

    Assessment of overall heat transfer coefficient models to predict the performance of laboratory-scale jacketed batch reactors

    Get PDF
    Heat transfer models for agitated, jacketed, laboratory-scale batch reactors are required to predict process temperature profiles with great accuracy for tasks associated with chemical process development such as batch crystallization and chemical reaction kinetics modeling. The standard approach uses a reduced model which assumes the system can be adequately represented by a single overall heat transfer coefficient which is independent of time; however, the performance of reduced models for predicting the evolution of process temperature is rarely discussed. Laboratory scale (0.5 and 5 L) experiments were conducted using a Huber thermoregulator to deliver a thermal fluid at constant flow to a heat transfer jacket. It is demonstrated that the relative specific heat contribution of the reactor and inserts represent an increasing obstacle for these transient models with decreasing scale. However, a series of experiments implied that thermal losses were the limiting factor in the performance of a single coefficient reduced model at laboratory-scale. A diabatic model is presented which accounts for both thermal losses and the thermal inertia of the reactor vessel and inserts by incorporating a second coefficient and a modified heat capacity term. The mean absolute error in predicted process temperature was thereby reduced by a factor of 8, from 2.4 to 0.3 K, over a 150 min experiment
    • 

    corecore