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Ground-state energy of H−: a critical test of triple basis sets

E. M. R. Petrimoulx, A. T. Bondy, E. A. Ene, Lamies A. Sati, and G. W. F. Drake
1Department of Physics, University of Windsor, Windsor, Ontario, N9B 3P4 Canada

(Dated: October 10, 2023)

We report an improved variational upper bound for the ground state energy of H− using Hylleraas-
like wave functions in the form of a triple basis set having three distinct distance scales. The
extended precision DQFUN of Bailey, allowing for 70 decimal digit arithmetic, is implemented to
retain sufficient precision. Our result exceeds the previous record [A. M. Frolov, Euro. J. Phys. D
69, 132 (2015)], indicating that the Hylleraas triple basis set exhibits comparable convergence to the
widely used pseudorandom all-exponential basis sets, but the numerical stability against roundoff
error is much better. It is argued that the three distance scales have a clear physical interpretation.
The new variational bound is –0.527 751 016 544 377 196 590 814 469 a.u.

I. INTRODUCTION

High-precision calculations of properties of two-
electron atoms and ions, requiring a treatment of electron
correlation, have long served as a benchmark for the var-
ious methods of constructing wave functions, beginning
with the pioneering work of Hylleraas [1]. The key prop-
erty of interest is the nonrelativistic ground state energy
of helium or heliumlike ions, such as H−, a quantity cal-
culated previously in Refs. [2–8] that will be the subject
of this paper. Variational calculations provide an up-
per bound to the exact ground-state energy, and by the
Hylleraas-Undheim-McDonald (HUM) theorem [9], also
for the excited states.

These undertakings are critically important since the
variational procedure that leads to the best basis func-
tions for the energies can then be used in the calculation
of the suite of matrix elements needed for the perturba-
tions prescribed by the NRQED program [10, 11], lead-
ing to meaningful comparisons with experiments. This is
particularly important in the high-precision calculations
that are used in searches for new physics, such as the
calculation and measurement of the tuneout frequency
of helium [12] and King plots to search for an electron-
neutron interaction [13].

The difference in these variational calculations lies in
the choice of basis states. A conventional Hylleraas func-
tion has the form (for S-states)

ϕijk(α, β) = ri1 r
j
2 r

k
12 e
−αr1−βr2 ± exchange, (1)

where r1 and r2 are the position vectors of the two elec-
trons relative to the nucleus, r12 = |r1 − r2|, and α and
β are nonlinear parameters that set the distance scale.
This sometimes written equivalently in terms of perimet-
ric coordinates s = r1 + r2, t = r1 − r2 and u = r12. In a
standard Hylleraas calculation, as used in the early work
by Pekeris and others [14], one starts with a variational
trial function of the form

Ψ(r1, r2)tr =

i+j+k≤Ω∑
i,j,k=0

aijkϕijk(α, β) (2)

where the aijk are linear variational parameters, as de-
termined by matrix diagonalization. Ω defines a Pekeris

shell of terms that typically controls the size of the basis
set. If all terms are included, then the number of terms
in the variational basis set is

N =
(Ω + 1)(Ω + 2)(Ω + 3)

6
(3)

and so grows as Ω3. The quantity

Etr =
〈Ψtr|H|Ψtr〉
〈ΨtrΨtr〉

(4)

is then an upper bound to the true ground-state energy
for a system with Hamiltonian H. By the HUM theorem
[9], the higher matrix eigenvalues are also upper bounds
to the true excited states, provided only that the cor-
rect number of matrix eigenvalues lies lower. No further
orthogonalization is required.

There are two main problems with this approach.
First, although the Hylleraas basis set is provably com-
plete [15], and so is guaranteed to converge to the correct
answer as Ω is increased, a point of diminishing returns is
reached. In addition, the matrix eigenvalue problem be-
comes ill-conditioned leading to a severe loss of significant
figures. Second, the accuracy rapidly deteriorates with
increasing principal quantum number n for the higher-
lying excited states.

There have been three main approaches to circumvent
these problems. The first is to include other functional
forms, such as negative powers of s [16], half-integral
powers [17] and logarithmic terms of the form lnR where
R = (r2

1 + r2
2)1/2 [3, 18, 19], as suggested by the Fock ex-

pansion [20]. This approach was carried to its ultimate
conclusion by Schwartz [21], who obtained the ground
state energy of helium to 38 decimal digits with the use
of 104-digit arithmetic. This still stands as the record for
the most accurate calculation for a three-body system,
but it did not solve the problem of a loss of numerical
stability, or loss of accuracy with increasing n. Also, in-
tegrals over the logarithmic terms are more difficult in
the calculation of relativistic and QED corrections.

The second approach involves introducing a completely
different kind of Hylleraas function, as first proposed by
Frolov and coworkers [22], and further developed by Ko-
robov [23, 24] of the form

ϕexp(α, β, γ) = e−αr1−βr2−γr12 (5)
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This form has a γr12 term in the exponent, and no powers
of the radial coordinates at all. The trial function then
has the form

Ψ(r1, r2)tr =

N∑
i=0

aiϕexp(αi, βi, γi) (6)

with the 3N nonlinear parameters αi, βi, γi chosen in a
quasi-random manner, including complex values. The
advantages of this approach is the simplicity of the basis
set and the ease with which integrals over the basis set
can be calculated. The disadvantage is that extended
precision arithmetic is required to maintain numerical
stability, and the accuracy declines with increasing n for
excited states. Nevertheless, very high accuracy has been
obtained with this method up to n = 6 [25].

The third approach involves doubling the basis set, as
first proposed by Drake [26–28], so that the trial wave
function becomes

Ψ(r1, r2)tr =

i+j+k≤Ω∑
i,j,k=0

[
c
(A)
ijkϕijk(αA, βA)

+c
(B)
ijkϕijk(αB, βB)

]
(7)

In this form, each combination of powers i, j, k occurs

twice with independent linear variational parameters c
(A)
ijk

and c
(B)
ijk , and four nonlinear parameters αA, βA and

αB, βB. Their optimization produces a natural separa-
tion of the basis set into an asymptotic A sector with
approximately (screened) hydrogenic values for αA, βA,
and a short-range B sector with much larger values of
αB, βB that increase systematically with Ω. In general,
there is also a screened hydrogenic term c0Ψ0, but this
is omitted for Z = 1.

The original motivation for doubling the basis set was
to improve the accuracy for the higher-lying Rydberg
states of helium where there are indeed two distinct dis-
tance scales at play, and high precision results have been
obtained for all states of helium up to n = 10 and L = 7
[29]. An additional bonus is that doubling the basis set
also improves the accuracy for the ground state by more
than an order of magnitude for basis sets of the same
size [30], and with improved numerical stability. (The
1992/94 results were obtained with the 18-digit Defini-
con processor that was available at the time.)

If doubling the basis set helps, then it is natural to ask
what happens if the basis set is tripled or quadrupled.
By extension of Eq. (7), the trial wave function with a

triple basis set reads

Ψ(r1, r2)tr =

i+j+k≤ΩA∑
ijk

c
(A)
ijkϕijk(αA, βA)︸ ︷︷ ︸

A-sector

+

i+j+k≤ΩB∑
ijk

c
(B)
ijkϕijk(αB, βB)︸ ︷︷ ︸

B-sector

(8)

+

i+j+k≤ΩC∑
ijk

c
(C)
ijkϕijk(αC, βC)︸ ︷︷ ︸

C-sector

The parameters ΩX (X = A, B, C) separately control the
number of terms in each sector. Earlier calculations with
a triple basis set for the ground states of He, H− and Ps−

[5] showed that eigenvalues accurate to 21 figures could
be obtained with standard quadruple precision (32 deci-
mal digit) arithmetic. At the time, these were the most
accurate values in the literature, but they have since been
surpassed in accuracy by all-exponential calculations of
the Korobov type with larger basis sets [6–8, 24, 25].
Although the original 21-figure accuracy is sufficient for
current atomic physics applications (including the cal-
culation of relativistic and QED corrections), it is still
interesting to test the ultimate accuracy of the triple-
basis-set method in comparison with the all-exponential
method. The present work therefore extends the previous
calculations for H− [5] to much larger basis sets (∼10 000
terms). At this level, it is necessary to use extended pre-
cision arithmetic. We have therefore implemented the
multiprecision FORTRAN90 package of Bailey [31] with
double-quadruple (dq) precision, afforded by the DQ-
FUN package [32]. The resulting 70-digit arithmetic is
much more than what is actually needed.

II. CALCULATIONS

The main computational step is to construct approx-
imate variational solutions to the Schrödinger equation
with a triple basis set. In centre-of-mass coordinates, the
Hamiltonian is

H =
1

2µ

N∑
i=1

p2
i +

1

M

N∑
i=1

N∑
j>i

pi · pj

−
N∑
i=1

Ze2/4πε0
|ri|

+

N∑
j>i

e2/4πε0
|rj − ri|

 . (9)

with nuclear charge Z = 1 for H−. We present results for
both the finite- and infinite-mass cases, corresponding to
either including or excluding the pi ·pj mass polarization
term in Eq. (9). The variational solution is obtained by
solving the generalized eigenvalue problem

H− EO = 0,
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where H and O are the Hamiltonian and overlap matrices
in the basis given by Eq. (8). The nonlinear parameters
are then optimized on a six-dimensional energy surface
by calculating analytically the derivatives ∂E/∂αx and
∂E/∂βx [28]. The second derivatives are then estimated
by differencing, and the zeros of the first derivatives lo-
cated by Newton’s method. Since the derivatives become
exceedingly small near the minimum, the optimization is
carried out on a finite grid of points to avoid excessive nu-
merical cancellation in estimating the second derivatives
by differencing.

The optimization procedure produces a natural parti-
tion of the three sectors in Eq. 8 into different distance
scales with a clear physical meaning. The A sector with
the smallest nonlinear parameters represents the asymp-
totic region r →∞; the B sector with intermediate non-
linear parameters optimizes the intermediate region; and
the C sector, with the largest value for the nonlinear
parameters, optimizes the short-range behaviour of the
wave function. Fig. 1 shows how these nonlinear param-
eters vary with Ω conrolling the size of the basis set. In
the asymptotic A sector, αA, βA remain nearly constant
as Ω increases. In contrast, αB, βB, and especially αC, βC

increase nearly linearly with Ω. As a consequence, the
characteristic function rΩe−αr peaks at approximately
the same constant distance rpeak = Ω/α from the nu-
cleus in the B and C regions. Thus the wave function
spreads inwards with increasing Ω to represent complex
inner correlation effects, and perhaps also simulate loga-
rithmic terms.

III. RESULTS

This section describes the results of a sequence of cal-
culations for the ground-state energy of H−, and their
convergence with increasing basis set size, as controlled
by ΩX . The nominal size of each sector is as given by Eq.
(3). However, Since the triple basis set is over-complete
in that each combination of powers is included three
times, we have found that it is possible to introduce a
few truncations that improve the efficiency and numeri-
cal stability without significantly affecting the accuracy
of the final results. The truncations are as follows:

• Since the two electrons are equivalent, terms with
i > j are omitted. This reduces the basis set size
by nearly a factor of 2.

• In sector A (the long-range sector), the highest
powers j and k of r2 and r12 respectively are limited
to ΩA − 4.

• In sectors C, the value of ΩC is reduced to ΩC =
ΩA − 8, while ΩB = ΩA.

• In sectors X = B and C, the terms are restricted
to those with i+ j + k − |i− j| < ΩX for k > 6.
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FIG. 1: Variation of the nonlinear parameters αX , βX , X =
1, 2, 3 with basis set size (corresponds to X = A, B, C in the
text), determined by Ω1 = ΩA.

The last truncation is a modified version of one originally
suggested by Kono and Hattori [36]. It suppresses terms
in the short-range B and C sectors where the powers of r1

and r2 are very different. The second truncation on the
maximum powers of r2 and r12 in sector A was not used
in our previous Ref. [5], making the present basis sets
slightly smaller. For example, the present size is 2263
terms at ΩA = 21, instead of the previous 2276 terms.
These truncations only affect the order in which the basis
functions are added, and so they do not affect the com-
pleteness of the basis set or the ultimate convergence of
the results.

As a test of the truncations, Fig. 3 displays the frac-
tional energy difference between successive calculations
of different basis set sizes as a function of the number
of terms. The advantage of using the described trunca-
tions, particularly for larger basis sets where the energy
obtained using truncated basis sets is consistently lower.
The fractional difference being smaller demonstrates that
convergence is being achieved faster in the case of the
truncated basis sets.

The significant advantage gained by using a triple basis
over a double basis set is displayed in Fig. 3. The triple
basis sets give upper bounds that are several orders of
magnitude more accurate for a given number of terms.
Since Ω becomes large more quickly for the double basis
sets with the same number of terms as a triple basis set,
a point of diminishing returns is reached sooner. We
therefore did not attempt to perform large (N > 5500)
calculations for the double basis set case.

Tables IV and IV show the convergence pattern for
the ground state energy of the infinite- and finite-mass
cases respectively, obtained by progressively increasing
ΩA with the aforementioned truncations. Also displayed
in these convergence tables is the difference in energy,
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FIG. 1. Scaling of the nonlinear parameters ↵N , �N , N =
1, 2, 3 with basis set size, described by ⌦1.
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FIG. 2. The fractional energy di↵erence, as a function of basis
set size, is compared for truncated and untruncated basis sets.

The significant advantage is obtained by using the
triple basis set given in Eq. (4) can be seen in Fig. 3.
The triple basis set converges to a value several orders
of magnitude more precise for a given number of terms.
Since the triple basis sets are considerably more accu-
rate, we did not bother to perform large (N > 5500)
calculations of the energies with the double basis set.

Tables IV and IV show the convergence pattern for the
ground state energy of the infinite- and finite-mass cases,
respectively, obtained by progressively increasing ⌦A =
N with the aforementioned method of truncation. Also
displayed in these convergence tables is the di↵erence in
energy, denoted �, between successive basis sets, and
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FIG. 3. The fractional energy di↵erence, as a function of basis
set size, is compared for doubled and tripled basis sets.

also their ratio, as defined by

R(⌦) =
E(⌦� 1) � E(⌦� 2)

E(⌦) � E(⌦� 1)
(7)

The extrapolation and its uncertainty presented cor-
respond to an extrapolation of these values used to cal-
culate E(⌦ = 1) by a well-known procedure that is de-
scribed in detail in Ref. [5].

Table I compares the current result for the ground-
state energy of 1H� to previous calculations. This re-
sult improves upon the 2015 result of Frolov [8] by setting
the most precise and lowest upper bound for this energy.
Numerical comparison of the corresponding finite-mass
ground state energy is not possible due to the di↵erent
values of µ/M used in the two calculations; we used the
currently accepted µ/M = 0.000544320575, while Ref. [8]
used µ/M = 0.000544320557. Nevertheless, if we assume
that the stated µ/M values are exact, the following com-
parison of converged values can be made:

E(1H�)present = �0.527445881109733127170534568(30)

E(1H�)Ref. [8] = �0.527445881119767477071665(10)

We further note that the convergence pattern observed
in the infinite-mass case, where the Hylleraas method
performs equally well as the all-exponential method for
the same number of terms, is, as expected, also true in
the finite-mass case.

In the bottom two rows of Table I, we present the cal-
culated energies for a similar number of terms between
the previous best calculation [8] and the present work.
We compared the results around N = 4000 since this was
the maximum number of terms used in Ref. [8]. These
results demonstrate that the convergence between the
triple Hylleraas basis set construction used in the present

FIG. 2: The fractional energy difference, as a function of basis
set size, compared for truncated and untruncated basis sets.
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1, 2, 3 with basis set size, described by ⌦1.
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The significant advantage is obtained by using the
triple basis set given in Eq. (4) can be seen in Fig. 3.
The triple basis set converges to a value several orders
of magnitude more precise for a given number of terms.
Since the triple basis sets are considerably more accu-
rate, we did not bother to perform large (N > 5500)
calculations of the energies with the double basis set.

Tables IV and IV show the convergence pattern for the
ground state energy of the infinite- and finite-mass cases,
respectively, obtained by progressively increasing ⌦A =
N with the aforementioned method of truncation. Also
displayed in these convergence tables is the di↵erence in
energy, denoted �, between successive basis sets, and
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also their ratio, as defined by

R(⌦) =
E(⌦� 1) � E(⌦� 2)

E(⌦) � E(⌦� 1)
(7)

The extrapolation and its uncertainty presented cor-
respond to an extrapolation of these values used to cal-
culate E(⌦ = 1) by a well-known procedure that is de-
scribed in detail in Ref. [5].

Table I compares the current result for the ground-
state energy of 1H� to previous calculations. This re-
sult improves upon the 2015 result of Frolov [8] by setting
the most precise and lowest upper bound for this energy.
Numerical comparison of the corresponding finite-mass
ground state energy is not possible due to the di↵erent
values of µ/M used in the two calculations; we used the
currently accepted µ/M = 0.000544320575, while Ref. [8]
used µ/M = 0.000544320557. Nevertheless, if we assume
that the stated µ/M values are exact, the following com-
parison of converged values can be made:

E(1H�)present = �0.527445881109733127170534568(30)

E(1H�)Ref. [8] = �0.527445881119767477071665(10)

We further note that the convergence pattern observed
in the infinite-mass case, where the Hylleraas method
performs equally well as the all-exponential method for
the same number of terms, is, as expected, also true in
the finite-mass case.

In the bottom two rows of Table I, we present the cal-
culated energies for a similar number of terms between
the previous best calculation [8] and the present work.
We compared the results around N = 4000 since this was
the maximum number of terms used in Ref. [8]. These
results demonstrate that the convergence between the
triple Hylleraas basis set construction used in the present

FIG. 3: Comparison of the fractional energy difference, as a
function of basis set size, for doubled and tripled basis sets.

denoted ∆, between successive ΩA values, and also their
ratio defined by

R(Ω) =
E(Ω− 1)− E(Ω− 2)

E(Ω)− E(Ω− 1)
(10)

The R values provide a direct measure of the smooth-
ness of convergence. If R were a constant, then the series
would converge as a geometric series of constant ratios.
Since R is not constant, a least-squares fitting procedure
was used to obtain an extrapolated energy and its uncer-
tainty corresponding to Ω =∞) [5].

Table I compares the current result for the ground-
state energy of ∞H− with previous calculations. This
result improves upon the 2015 result of Frolov [8] by set-
ting a better (i.e. lower) upper bound for this energy.
Numerical comparison of the corresponding finite-mass

TABLE I: Comparison of different calculations of the non-
relativistic energy of ∞H− (infinite nuclear mass) in atomic
units. The third and fourth rows from the bottom compare
the previous best upper bound from previous work [8] with
the present work, while the bottom rows compare these two
calculations for a similar number of terms.

Reference E(∞H− )

Ref. [2] −0.527 751 016 544 240

Ref. [3] −0.527 751 016 544 240

Ref. [4] −0.527 751 016 544 253

Ref. [6] −0.527 751 016 544 377 196 503

Ref. [5] −0.527 751 016 544 377 196 586 5

Ref. [7] −0.527 751 016 544 377 196 589 733

Ref. [8] a −0.527 751 016 544 377 196 590 75(10)

This work a −0.527 751 016 544 377 196 590 814 520 (18)

Ref. [8] b −0.527 751 016 544 377 196 590 446

This work b −0.527 751 016 544 377 196 590 814 469

N = 4000 [8] −0.527 751 016 544 377 196 590 446

N = 4089 −0.527 751 016 544 377 196 590 625 . . .

aThese extrapolated values correspond an infinitely large basis
set.
bThese numbers represent the lowest upper bound achieved in the

two respective calculations.

ground state energy is not possible due to the different
values of µ/M used in the two calculations; we used the
currently accepted µ/M = 0.000544320575, while Ref. [8]
used µ/M = 0.000544320557.

We further note that the convergence pattern ob-
served in the infinite-mass case, where the triple basis
set method performs equally well as the all-exponential
method for the same number of terms, is also true in the
finite-mass case.

The bottom two rows of Table I compare our present
calculated energies with the best previous calculation [8]
for a similar number of terms in the basis set. The com-
parison around N = 4000 corresponds to the maximum
number of terms used in Ref. [8]. Contrary to previous
claims [21, 33], these results demonstrate that the rate
of convergence for the triple Hylleraas basis set is about
the same as that of the all-exponential method used in
Ref. [8].

The code used to generate the wavefunctions for in-
finite and finite mass cases, each with doubled and
tripled basis sets, can be found on our GitHub page
at github.com/DrakeResearcher/PublicPrograms and
will be published in a forthcoming paper.

IV. DISCUSSION

The main focus of this paper is to explore the proper-
ties of triple basis sets as a method for the high-precision
solution of the quantum mechanical three-body problem.
The ground state of H− serves as a test case where cor-
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relation effects are of dominant importance. The results
greatly extend our previous calculations for H− [5] from
2276 terms (Ω = 21) to 9500 terms (Ω = 35). As shown
in Table I the present result sets a new best upper bound
for the nonrelativistic ground state energy of ∞H−. The
new upper bound is -0.527 733 137 114 642 857 599 601
567 a.u.

The improved results required implementing extended
precision arithmetic to maintain sufficient accuracy for
basis sets beyond about 3000 terms, or 20 figure accu-
racy. However, remembering that quantities other than
the energy are only accurate to about half as many fig-
ures, the old 20 figure accuracy was perfectly adequate
for most atomic physics applications, including the cal-
culation of relativistic and QED corrections.

Nevertheless, it is still of interest to explore the com-
parison with the quasirandom all-exponential method to
test both the ultimate accuracy and numerical stability
of the two methods. The comparison shows that the rate
of convergence with basis set size is about the same as for
the newer Frolov calculations [8], but the numerical sta-
bility of the triple basis set method is much better. Since
quadruple precision (32-digit) arithmetic yields 20 figure
accuracy for the energy, only about 12 figures are lost due
to round-off error. In contrast, extended precision arith-
metic is required for the all-exponential method even for
relatively small basis sets. Although integrals are simpler
for the all-exponential method because there are no pow-
ers of the radial coordinates, the corresponding integrals,
including the more singular ones, are well known for the
triple basis set, and analytic formulas are tabulated in
ref. [37]. In addition, there are simple angular/radial re-

cursion relations that can be used if there is no γr12 term
in the exponent [38].

There are also differences in aesthetics and physical in-
terpretation. As stated by Schwartz [? ] “What struck
me as surprising in Korobovs work was the fact that it
seemed to ignore that earlier ‘wisdom’ about analytic
properties of wave- functions.” While the individual Ko-
robov functions of the form e−αr1−βr2−γr12 are concep-
tually very simple, the randomized values for α, β and
γ are lacking in physical meaning. On the other hand,
the optimization procedure for the triple basis set is de-
terministic and produces a natural physical separation
of the distance scales into asymptotic, intermediate and
short-range distances.

In future work, we will use the triple basis sets to up-
date all the states covered in the 1992 tabulation [29]
for helium, including the relativistic and quantum elec-
trodynamic corrections to the energies needed to make
high precision comparisons with experiment. The indi-
vidual optimization of distance scales will be especially
valuable in extending the calculations to higher-lying Ry-
dberg states beyond the n = 10 limit in Ref. [29]. It may
also prove useful in other ongoing work concerning the
beta decay of 6He to form 6Li+ [39] and the charge-state
distributions of the decay products in the energy range
of overlapping continua for 6Li+ [40].
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