4,152 research outputs found
Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds
Promoting angiogenesis is a key strategy for stimulating the repair of damaged tissues, including bone. Among other proangiogenic factors, ions have recently been considered a potent element that can be incorporated into biomaterials and then released at therapeutic doses. Silicate-based biomaterials have been reported to induce neovascularization through vascular endothelial growth factor signaling pathway, potentiating acceleration of bone regeneration. Here, we designed a silicate-shelled hydrogel fiber scaffold with a hard/soft layered structure to investigate the possibility of silicate coating on biopolymer for enhancing biological properties. An alginate hydrogel was injected to form a fiber scaffold with shape-tunability that was then coated with a thin silicate layer with various sol-gel compositions. The silicate/alginate scaffold could release calcium and silicate ions, and in particular, silicate ion release was highly sustainable for over one week at therapeutically relevant levels. The ionic release was highly effective in stimulating the mRNA expression of angiogenic markers (VEGF, KDR, eNOS, bFGF, and HIF1-α) in endothelial cells (HUVECs). Moreover, the in vitro tubular networking of cells was significantly enhanced (1.5 times). In vivo implantation in subcutaneous tissue revealed more pronounced blood vessel formation around the silicate-shelled scaffolds than around silicate-free scaffolds. The presence of a silicate shell was also shown to accelerate acellular mineral (hydroxyapatite) formation. The cellular osteogenesis potential of the silicate/alginate scaffold was further proven by the enhanced expression of osteogenic genes (Col1a1, ALP and OCN). When implanted in a rat calvarium defect, the silicate-shelled scaffold demonstrated significantly improved bone formation (2-3 times higher in bone volume and density) with a concurrent sign of proangiogenesis. This work highlights that the surface-layering of silicate composition is an effective approach for improving the bone regeneration capacity of polymeric hydrogel scaffolds by stimulating ion-induced angiogenesis and providing bone bioactivity to the surface
Physiological integration of coral colonies is correlated with bleaching resistance
Inter-module physiological integration of colonial organisms can facilitate colony-wide coordinated responses to stimuli that strengthen colony fitness and stress resistance. In scleractinian corals, whose colonial integration ranges from isolated polyps to a seamless continuum of polyp structures and functions, this coordination improves responses to injury, predation, disease, and stress and may be one of the indications of an evolutionary origin of Symbiodinium symbiosis. However, observations of species-specific coral bleaching patterns suggest that highly integrated coral colonies may be more susceptible to thermal stress, and support the hypothesis that communication pathways between highly integrated polyps facilitate the dissemination of toxic byproducts created during the bleaching response. Here we reassess this hypothesis by parameterizing an integration index using 7 skeletal features that have been historically employed to infer physiological integration. We examine the relationship between this index and bleaching response across a phylogeny of 88 diverse coral species. Correcting for phylogenetic relationships among species in the analyses reveals significant patterns among species characters that could otherwise be obscured in simple cross-species comparisons using standard statistics, whose assumptions of independence are violated by the shared evolutionary history among species. Similar to the observed benefits of in creased coloniality for other types of stressors, the results indicate a significantly reduced bleaching response among coral species with highly integrated colonies
Characterizing Debris in the Infrared with UKIRT
The United Kingdom Infrared Telescope (UKIRT) has been a major asset for the NASA Orbital Debris Program Office (OPDO) since March, 2014. With the UKIRT current contract coming to an end at the finish of FY15, there is a golden opportunity for this community to fund and gain access to UKIRT as an SSA asset through HCAR (Hawaii Center for Astronautics Research). UKIRT is the only telescope on Mauna Kea dedicated to infrared bands. Spectral coverage ranges from the near- (0.8-5m) to the mid- to far-infrared (8-25 micrometer) regime. To date, debris observations have been collected with three instruments. Near-Infrared photometry with ZYJHK filters has been obtained with the Wide Field Camera (WFCam). Near-Infrared (1-2.5 micrometer) spectra are the focus of observations taken with the UKIRT Imager SpecTrometer (UIST). And Michelle (Mid Infrared escCHELLE) is a thermal imager-spectrometer designed for the 8-25 micrometer regime. With 35% of the telescope time allocated to ODPO, a very steady stream of data has been collected on a variety of debris targets using all the above instrumentation. Initial results from WFCam were discussed at AMOS and NISOI including analyses on IDCSPs, the MSG cooler and baffle covers. The cylindrical HS-376 buses were the focus of recent WFCam runs. Summary analyses of these works will be presented. Focus will be given to initial results of the data collected with the Cassegrain instruments, UIST and Michelle. UIST spectra were collected in September 2014, March and April 2015. Targets included a suite of HS-376 buses, well suited to investigate the signatures of blue solar panels; several dead satellites with solar array wings; Titan 3C transtage debris; the CTA Array cover, and others. In addition, Michelle mid-IR photometry was collected on a select few objects during the April 2015 run. Using WFCam, UIST and Michelle the Lockheed Martin has been observing operational satellites in the near- mid and far-infrared regime in an attempt to understand the health and status of several satellites that are based on the Lockheed Martin A2100 bus. The potential insights into debris characterization using this range of assets, and early analyses will be discussed, as well as the opportunities possible for utilizing UKIRT as an SSA asset
AKT inhibition is associated with chemosensitisation in the pancreatic cancer cell line MIA-PaCa-2
Activation of the serine/threonine kinase AKT is common in pancreatic cancer; inhibition of which sensitises cells to the apoptotic effect of chemotherapy. Of the various downstream targets of AKT, we examined activation of the NF-kappaB transcription factor and subsequent transcriptional regulation of BCL-2 gene family in pancreatic cancer cells. Inhibition of either phosphatidylinositol-3 kinase or AKT led to a decreased protein level of the antiapoptotic gene BCL-2 and an increased protein level of the proapoptotic gene BAX. Furthermore, inhibition of AKT decreased the function of NF-kappaB, which is capable of transcriptional regulation of the BCL-2 gene. Inhibiting this pathway had little effect on the basal level of apoptosis in pancreatic cancer cells, but increased the apoptotic effect of chemotherapy. The antiapoptotic effect of AKT activation in pancreatic cancer cells may involve transcriptional induction of a profile of BCL-2 proteins that confer resistance to apoptosis; alteration of this balance allows sensitisation to the apoptotic effect of chemotherapy
Measurement of event shapes in deep inelastic scattering at HERA
Inclusive event-shape variables have been measured in the current region of
the Breit frame for neutral current deep inelastic ep scattering using an
integrated luminosity of 45.0 pb^-1 collected with the ZEUS detector at HERA.
The variables studied included thrust, jet broadening and invariant jet mass.
The kinematic range covered was 10 < Q^2 < 20,480 GeV^2 and 6.10^-4 < x < 0.6,
where Q^2 is the virtuality of the exchanged boson and x is the Bjorken
variable. The Q dependence of the shape variables has been used in conjunction
with NLO perturbative calculations and the Dokshitzer-Webber non-perturbative
corrections (`power corrections') to investigate the validity of this approach.Comment: 7+25 pages, 6 figure
An NLO QCD analysis of inclusive cross-section and jet-production data from the ZEUS experiment
The ZEUS inclusive differential cross-section data from HERA, for charged and
neutral current processes taken with e+ and e- beams, together with
differential cross-section data on inclusive jet production in e+ p scattering
and dijet production in \gamma p scattering, have been used in a new NLO QCD
analysis to extract the parton distribution functions of the proton. The input
of jet data constrains the gluon and allows an accurate extraction of
\alpha_s(M_Z) at NLO;
\alpha_s(M_Z) = 0.1183 \pm 0.0028(exp.) \pm 0.0008(model)
An additional uncertainty from the choice of scales is estimated as \pm
0.005. This is the first extraction of \alpha_s(M_Z) from HERA data alone.Comment: 37 pages, 14 figures, to be submitted to EPJC. PDFs available at
http://durpdg.dur.ac.uk/hepdata in LHAPDFv
Inclusive jet cross sections and dijet correlations in photoproduction at HERA
Inclusive jet cross sections in photoproduction for events containing a
meson have been measured with the ZEUS detector at HERA using an integrated
luminosity of . The events were required to have a
virtuality of the incoming photon, , of less than 1 GeV, and a
photon-proton centre-of-mass energy in the range . The measurements are compared with next-to-leading-order (NLO) QCD
calculations. Good agreement is found with the NLO calculations over most of
the measured kinematic region. Requiring a second jet in the event allowed a
more detailed comparison with QCD calculations. The measured dijet cross
sections are also compared to Monte Carlo (MC) models which incorporate
leading-order matrix elements followed by parton showers and hadronisation. The
NLO QCD predictions are in general agreement with the data although differences
have been isolated to regions where contributions from higher orders are
expected to be significant. The MC models give a better description than the
NLO predictions of the shape of the measured cross sections.Comment: 43 pages, 12 figures, charm jets ZEU
Search for lepton-flavor violation at HERA
A search for lepton-flavor-violating interactions and has been performed with the ZEUS detector using the entire HERA I
data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data
were taken at center-of-mass energies, , of 300 and 318 GeV. No
evidence of lepton-flavor violation was found, and constraints were derived on
leptoquarks (LQs) that could mediate such interactions. For LQ masses below
, limits were set on , where
is the coupling of the LQ to an electron and a
first-generation quark , and is the branching ratio of
the LQ to the final-state lepton ( or ) and a quark . For
LQ masses much larger than , limits were set on the four-fermion
interaction term for LQs that couple to an electron and a quark
and to a lepton and a quark , where and are
quark generation indices. Some of the limits are also applicable to
lepton-flavor-violating processes mediated by squarks in -Parity-violating
supersymmetric models. In some cases, especially when a higher-generation quark
is involved and for the process , the ZEUS limits are the most
stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig.
6) adde
- …