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Abstract 
This study will address the opportunity of using a big data driven approach to providing a more 
specific description of track quality, mainly selecting segments of the track exhibiting higher 
settlement with the use of data analytics and machine learning. The focus will be on a high-speed line 
in the UK with data covering over 15 years of track geometry. Data sets describing track geometry 
quality have an enormous volume, which means that it is impractical to apply conventional methods 
to process it fully. The overall aim of this work was to apply an AI technique to analyse the big data. 
An Artificial Neural Network (ANN) was developed on features from the available data set and used 
to identify segments of the track where the condition has either improved or deteriorated in the period 
between two inspection runs. The model achieved an accuracy of ~98% during training and was able 
to reliably identify segments of the track which underwent significant changes in measurements. The 
ANN was used to perform an initial analysis of the geometry data, which revealed that maintenance 
works (mainly large-scale tamping) may include healthy portions of the track and potentially reduce 
its life span. Approximately 50% of the tamped track was not found to improve significantly, based 
on several different geometric features. On the other hand, local works with a sprinter tamper were 
much more efficient at eliminating defects. 

      

Key words: Rail, Maintenance, High Speed Track, Ballast, Monitoring, Artificial Neural Network, 
Machine Learning, Tamping 
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Introduction 
     Railways are an important means of transportation in the UK, which has seen a steady increase in 
demand over time – Figure 1. At the end of 2019-20 Q3, the recorded rail passenger journeys in the 
UK were 462 million, which was an increase of almost 12 million (2.6%) from a year prior. Passenger 
revenue reached US$3.5 billion in Q3 – 2.9% increase [1]. In June 2019, the UK committed to 
reaching a net zero carbon emission target by 2050 [2], which will ultimately increase rail traffic 
further. Currently, transportation is the largest contributor to greenhouse gas emissions in the UK [3] 
and if the goal set out is to be met, sustainable transportation services, such as trains, must become 
more reliable. The increasing use of railway transportation will lead directly to higher annual tonnage 
on tracks and greater care must be taken of the assets to ensure the safety and comfort of all 
passengers, as well as the cost effective and optimum maintenance of the track. 

     Rail tracks will deteriorate as they age, and this is a process which is usually affected by various 
factors. The deterioration may be in the form of deviations from track geometry, ballast fouling, 
loosening of fasteners, ties/sleepers cracking, wet beds, etc. and these faults can be the cause 
discomfort for passengers on-board a train, and in more extreme cases – derailments.  
     On high-speed routes there are strict regulations to maintain the high quality of the lines and avoid 
traffic disruptions, which can cause substantial financial losses. To do this, more rigorous and 
efficient ways of evaluating the condition of the tracks are necessary. It is reported that European 
countries allocate between US$20B and US$30B annually on maintenance and renewal of railway 
systems [4]. Maintenance is usually in the form of track tamping. There are two kinds of tamping 
performed by Network Rail – large-scale and local. Large-scale (or high output) tamping deals with 
more severe faults, whereas local works (sprinter tamping or manual packing of the ballast) are 
against individual defects covering a short span of the track. The types of maintenance techniques will 
be further elaborated on later in this paper. Methods of estimating the severity and cause of track 
deterioration at a given point in time are crucial to the scheduling of proactive/predictive and not just 
corrective or preventive maintenance, which will extend the lifespan of railways. Since these are 
highly expensive activities, such methods could potentially save US$Ms annually. 
     This project will focus on a high-speed operated line in the UK. The aim of the paper is to provide 
a new method of evaluating track quality, and evaluate the efficiency of different maintenance 
activities. The objectives are as follows: 

• Preliminary analysis of track geometry data to obtain domain knowledge 
• Developing an Artificial Neural Network (ANN) to classify track segments based on on-

going quality 
• Assessment of maintenance efficiency based on various remediation activities. 

Figure 1. Passenger journeys in the UK: 2014-2019. Data taken from [1]. 



3 
 

A rich dataset of geometry measurements from 2003-2021 has been obtained via Network Rail for 
this purpose. 

Background 
     Some of the earlier methods used to estimate the degradation of railways over time were designed 
in the 1980s and ‘90s. These were mostly mechanistic models looking into defects caused by ballast 
settlement [5]. The main issue with mechanistic models has been their inability to consider factors of 
uncertainty of track degradation behaviour. The purpose of these was to understand how a track 
behaves, so predictions about its quality can be made. In more recent research, a numerical model was 
developed, which has the ability to calculate differential track settlement [6]. It is based on Finite 
Element Method with perfectly matched layers (FEM-PML) and solved across two domains 
(frequency-wavenumber and time-space). The model is used to update the track geometry profile after 
each axle load and assess its effect on differential track settlement. In [7], the authors developed a 
semi-analytical expression for track settlement at each load cycle. Provided a vehicle-track interaction 
analysis, the model was able to represent the differences in the rate of settlement due to differences in 
initial track bed stiffness, type and speed of vehicles, and the resulting rail roughness. 

     Apart from numerical models, a number of quality indices have been developed as a way of 
assessing the overall condition of a railway. Some of them are listed in [8] and include the Track 
Roughness index (developed by Amtrak), Track Geometry index (developed by Indian railways), J 
coefficient (Poland), and Track Quality index (Federal Railroad Administration - FRA). These are 
indirectly related to geometry measurements, as they are derived from their statistical distribution 
properties. They are thought to be more indicative of the roughness of the track, or its overall 
condition, rather than highlighting unique problems. While properties such as standard deviation (SD) 
provide information about the spread of a dataset, they do not inform the engineer about 
measurements at certain locations rapidly approaching critical levels. Without this information it is 
possible that there is inadequate allocation of tamping, leading to an inefficient scheme. Such practice 
can impact the long-term condition of the track, train safety, ride quality, and maintenance cost [9].  

     It is common practice, especially in Europe, to use the SD of a single geometric feature (rail 
profile, alignment, twist, etc.) as an index and set a threshold value to describe the quality of the track. 
This technique was used in [9], where different thresholds were simulated to optimize maintenance 
costs. The authors model track degradation and the probability of isolated defects based on SD levels 
from a segment of a fixed length. Other statistical models have been applied to assess quality as well 
and predict future behaviour using this kind of index [10-12]. Often, the length of track used to 
estimate SD is 200 metres – this technique is one of two being used by Network Rail. Based on this, 
decisions where to tamp the track are made to ensure readings are within target values [13]. This kind 
of maintenance usually covers longer portions of the track and is known as preventive maintenance. 
The practice followed by Network Rail is similar to the one used by the Société Nationale des 
Chemins de fer Français (SNCF), the French rail operator. The other method of scheduling 
maintenance is based on individual readings exceeding predefined threshold values (corrective 
maintenance). This is usually aimed at removing local defects which have been flagged as warning 
values.  

     Structural health monitoring in civil engineering can vary depending on the type of asset being 
monitored. Data may be collected from static or moving sensors. In bridge monitoring, sensors will be 
fixed on different components of the structure and collect data continuously at a specific frequency 
[14, 15] – these are static sensors. This creates a large data set in a time series format, where deep 
learning algorithms such as Long Short-Term Memory (LSTM) neural networks can be applied to 
predict future behaviour [16]. In the case of railway track infrastructure, data can be collected from 
fixed sensors, but this can be difficult due to the vast number of sensors required to cover an entire 
track. The quantity of geometry measurements generated from such a system would be 
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computationally expensive and unfeasible. Instead, sensing equipment is fixed on a recording vehicle, 
which is used to collect data periodically. This is typically undertaken every few weeks. As a result, 
the data is less regular and requires a different technique to analyse. Various statistical methods have 
been applied to describe the state of a railway track based on geometry measurements [12, 17-20]. 
Other probabilistic models, such as random forest regression have been used for predicting track 
degradation indices [21]. More traditional machine learning algorithms have also gained popularity in 
the railway industry as a way of analysing very large data sets in a relatively short period. [22, 23]. 
Artificial neural networks have been used in a number of studies before and will be the main analysis 
tool in this paper as well. 

     An example of such an analysis is the research undertaken using track geometry measurements 
from the SNCF-operated high-speed TGV line in France [24, 25]. In [25], the authors built a model 
based on a Monte Carlo simulation to represent the ageing process of the track under certain 
conditions. The main geometric feature used in this study is the mean deviation of the longitudinal rail 
profile (NL) of a 1-kilometre-long track section. The progression of this parameter in between 
tamping activities is simulated based on the assumption that the growth of degradation is described by 
an exponential function (Fig. 2):  

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛 = 𝑒𝑒𝑏𝑏𝑛𝑛(𝑡𝑡−𝑡𝑡𝑛𝑛) +  𝜀𝜀(𝑁𝑁)  (1) 

 
Where 𝑁𝑁 is time, 𝑁𝑁𝑛𝑛 is the time of the last tamping activity, 𝑏𝑏𝑛𝑛 (deterioration rate) is a log-normally 
distributed stochastic variable, and 𝜀𝜀(𝑁𝑁) is a normally distributed variable with mean equal to zero. 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛 is the initial NL value immediately after the nth tamping and is log-normally distributed, i.e. 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛 ~ ℒ𝒩𝒩 �𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑁𝑁𝑡𝑡(𝑁𝑁),𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑁𝑁𝑡𝑡2 (𝑁𝑁)�  (2) 

 

Where 𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑁𝑁𝑡𝑡(𝑁𝑁)is the mean and 𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑁𝑁𝑡𝑡2  – the variance. The factors affecting the track ageing 
process have remained the same throughout the simulation. The results showed that the 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛 value 
grew with each tamping activity until it eventually stabilized to one value. This is indicative of the 
lower efficiency of tamping over time, i.e., the degrading state of the ballast. This was further 
noticeable since the quality loss rate (𝑏𝑏𝑛𝑛) continued to diverge with each tamping, meaning that the 
condition is degrading quicker (Fig. 3). The developed model was used to simulate the longitudinal 
level of the high-speed TGV line given two different maximum allowable velocities (250 km/h and 
300 km/h). The simulation showed that the two cases followed a very similar pattern, with the only 
difference being that the simulation with the higher velocity exhibited quicker deterioration and will 
require more frequent interventions.  

 

 

 

 

 

 

 

 Figure 2. Schematic track geometry quality course using an exponential model [25] 
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     A different study [26] has been carried out on UK railway lines regarding the whole lifecycle cost 
(WLCC) analysis. The work here mainly focuses on the economical aspect and analyses trade-offs 
between costs for transportation, construction, maintenance, and use. The track quality in this study 
was expressed as the standard deviation value of the horizontal and vertical geometry features over 
200-metre segments. Monte-Carlo simulations were performed to generate a range of scenarios where 
the WLCC of an asset is estimated. One of the findings was that maintaining the quality of a high-
speed passenger line at an average level was more beneficial economically. Intuitively, performing the 
minimum amount of tamping reduces the maintenance costs significantly, however that created a 
larger increase in track use costs, as well as increasing risk of derailment. The outcome of this study 
suggests that the maintenance scheduling of a railway track involves a trade-off between quality and 
cost and may be different for individual line classes. While this is an important aspect of quality 
assessment and maintenance scheduling, this study has not yet considered a lifecycle cost analysis and 
will focus mainly on assessing track quality. 

Available data 
Geometry measurements 
     The track investigated in this paper is 
strictly for high-speed trains and does not carry 
other types of traffic on its main lines. The 
majority of the line is ballasted track with twin 
and mono-block (mostly at switches and 
crossings) concrete sleepers. It is regularly 
inspected mainly using specialised track 
recording vehicles known as TRV’s, but also 
the New Measurement Train (NMT) – Figure 
4. The NMT can collect readings from the track at up to 200 km/h. All recording vehicles are 
equipped with a variety of sensors (accelerometers, transducers, laser sensors, etc.) to measure 
specific geometric features and detect faults and degrading track. The trains will measure geometric 
properties, such as top profiles (over both 35m (short) and 70m (long) wavelengths), twist (3m), 
gauge, alignment, and cant deficiency. This study will focus mostly on vertical profile related 
features. TRV’s are used to inspect enormous lengths of track annually – 115,000 miles a year in the 
case of the NMT, producing large amounts of data making it difficult to analyse using traditional 
methods. 

     Readings from inspections on the line in question are stored on a server and access to these data 
have been granted to the University of Edinburgh for research purposes. The data set explored is from 

Figure 3. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (left) and 𝑏𝑏𝑛𝑛 (right) after each tamping [25] 

Figure 4. Network Rail’s New Measurement Train [27] 
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the period September 2003 – April 2021. Usually, inspections are carried out every six weeks, which 
provides a large history of the behaviour of the track. During an inspection, the train sensors 
(accelerometers) collect data in a raw format, which are immediately processed using the inertial 
method (double integration) for accelerometer data to obtain the final displacement readings. High-
pass filters are applied to remove very long-wavelength forms (>100 metres) and design features. For 
vertical profiles, transducers are used to filter out the displacement of the suspension system and 
provide a measurement of the actual rail surface. 

Maintenance activities 
     Apart from geometry measurements, Network 
Rail has also provided access to maintenance records. 
These include high output tamping (also known as 
large-scale works for correcting multiple defects in a 
longer track span), local works, such as sprinter 
tamping and manual packing (against individual 
faults in short track spans), and welding and grinding. 
Welding and grinding activities are performed 
annually to remove imperfections on the rails, such as 
cracks and corrugation. These have not affected track 
geometry based on the available data and therefore are not currently part of the analysis. Large-scale 
works include the use of a dynamic track stabiliser (DTS) and is the most significant type of 
maintenance performed. Figure 5 shows a tamping machine used by Network Rail.  

     As mentioned earlier, Network Rail employs two monitoring techniques as a means of scheduling 
interventions. The first one includes estimating standard deviation of geometry features for 200-metre 
track segments and studying them over time. Based on this value, maintenance activities may be 
required. An example of this is shown in Fig. 6. The large vertical drops are indicative of maintenance 
occurring at different points in time. The example shown includes both large-scale (red markers) and 
local (green markers) maintenance works. It can be seen that for this segment, over the lifespan of the 
track the standard deviation for vertical profile readings does not exceed 1.4 mm, which is indicating 
a satisfactory state of the railway. This type of behaviour dominates most of the line, as maintenance 
thresholds are fairly low on high-speed tracks, and it is constantly held to a very high standard of 
quality. Table 1 shows typical actions by Network Rail given different ranges of standard deviation 
values for vertical profile based on line speed. Tracks with a lower maximum allowable velocity 
present a lower risk for passengers, and therefore have a higher maintenance threshold than high-
speed tracks.  

Figure 5. Network Rail tamping machine 

Figure 6. Standard deviation values for a single 200-metre track segment (2003-2020) showing the 
quality of the left short-wave top profile (35m) and maintenance works done during the period. Local 

tamping includes manual packing and sprinter tamping. 



7 
 

 

Where TV, WV, AV, and SRV are the following: 

• Target Value, where the reading is acceptable 
• Warning Value which will require future maintenance 
• Action Value, which is considered an intervention limit 
• Speed Restriction Value, which is also an immediate action limit. 

     For the second monitoring technique, there are two exceedance levels when it comes to critical 
values of individual measurements – level 1 and level 2. Level 1 is set to identify a reading which is 
undesirable and will require attention in the future. This is not an immediate action fault as it does not 
pose a real danger to passengers. Level 2 defects, on the other hand, are considered to be more serious 
and must be rectified within specific timescales. Additional control measures are taken against cyclic 
top faults, which are repeated waveforms in close succession appearing on the rail profile, causing a 
higher track roughness. If the trace from the measurements shows that the surface of the rails is 
irregular and could lead to passenger discomfort, this may require tamping the section. Table 2 
provides tolerance bands for individual measurements based on line speed. TSR in the Actions 
Required column stands for track speed restriction. All other abbreviations are as defined for Table 1. 

Table 2 Response actions based on individual measurements (via Network Rail) 

Parameter 909 Vertical Alignment 35m, RT35 or LT35 
Tolerance 

bands 
High speed 

201 - 300km/h 
Conventional 

Speed 
81 - 200km/h 

Low Speed 
80km/h or less 

Action Required 

Construction 5mm +0, -30mm +0, -30mm New installation 

Good 
TV 

5mm or less 9mm or less 9mm or less None 

Satisfactory 
WV 

6 – 9mm 14 – 17mm 20 – 22mm Investigate root cause and 
plan for correction. 

Poor 
AV 

10 – 14mm 18 – 25mm 23 – 35mm Correct within 14 days 

CRITCAL 
SRV 

15 – 21mm 26 – 27mm N/A 160 km/h TSR 
Inspect within 72 hours 
Correct within 7 days 

22 – 25mm 28 – 32mm 80 km/h TSR 

26 – 37mm 33 – 37mm 36-37mm 30 km/h TSR 

> 38mm Block the line 

Parameter 
914 

Vertical Alignment 35m and 70m SD 
Standard deviations are calculated for 200m sections of track. (EN13848) 

Tolerance 
bands 

High speed 
201 - 

300km/h 

Conventional 
Speed 

81 - 200km/h 

Low Speed 
80km/h or 

less 

Action Required 

Good 
TV 

< 1.0mm < 1.7mm < 3.8mm There are no SRV values as SD’s are a 
guidance figure only and is used to highlight 
areas of concern rather than specific details. 
 
A WV should lead to a more thorough 
review of the 200m section to highlight 
individual specific faults. 
 

Satisfactory 
WV 

1.0 – 1.5mm 1.7 – 2.4mm 3.9 – 
5.4mm 

Poor 
AV 

> 1.5mm > 2.4mm > 5.4mm Inspect within 14 days 
Complete TEF 3016HS 

Table 1. Response actions based on 200-metre standard deviation values (via Network Rail) 



8 
 

     The procedure for each maintenance activity performed by Network Rail is different and is 
therefore expected to have a varying effect on performance afterwards. High output tamping for 
example is typically performed over a longer portion of the track (several hundred metres or more), 
aiming to remove multiple defects within that span. In other words, this reduces the track roughness. 
During this process, the track may be lifted if necessary. If that is the case, when the rails are lifted by 
a known amount, new ballast is placed under the sleepers, until the desired position of the track is 
obtained. This is known as a ballast drop. In this scenario, the old ballast is not removed, but simply 
packed using the tamper.  

     The other set of works (local tamping) are more focused and aim to eliminate individual defects at 
specific locations on the track. A sprinter tamper is used for this type of work. Once a fault has been 
identified by a recording vehicle, the ballast particle size and shape at that location are inspected. If 
they are worn out and rounded from the constant cyclic loads and past tamping works, then part of the 
material under the sleepers may be replaced at the location of the defect, after which it is packed. The 
new material under the sleepers is taken from the ballast shoulders, where it has not experienced 
traffic loading. The worn-out/spent ballast is then used to form the shoulder again.  

     If ballast is renewed, this is expected to stabilize the track condition at that location and potentially 
reduce the rate of deterioration, assuming this was the root cause of the defect. However, if this 
procedure is performed multiple times at one location, it may lead to worn out material being inserted 
under the sleeper again, which may not be effective. These activities are usually performed by 
Network Rail in September/October each year. This is different from high output tamping, where the 
old ballast is simply compacted under the sleeper using a tamper, which will cause further rounding 
and wearing out of the particles. Figure 7 displays the difference in response of the standard deviation 
of the top left rail profile after both large-scale and local works within the same 50-metre track 
segment.  

 

 

 

 

 

 

It may be noticed from Fig. 7 that the rates at which the standard deviation increases tend to be 
different based on the type of work performed. High output tamping appears to have increased the rate 
of deterioration immediately after the works, whereas following local corrections, the deterioration 
rate is generally not as rapid. This observation was analysed further, and the same type of behaviour is 
apparent in other parts of the studied line. This is suspected to be a result of introducing new ballast 
under the sleepers during sprinter tamping (local works).  

    Furthermore, shortly after the very first tamping of this section, which was performed in 2004, the 
maximum readings of the left profile increased, causing noticeable deterioration. Such a spike in 
readings is evident later on in 2019 as well (not shown above). This is a sign that while large-scale 
tamping may potentially correct one geometrical property, it could serve as a destabilizing event for 
another. This may especially be the case if the initial condition before tamping is not indicating faults. 
Therefore, it is important to execute targeted maintenance to remove specific defects and not worsen 

Figure 7. Instances of track response after large-scale and local tamping. 
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others. Results show that on average, deterioration rates after large-scale works are approximately 
42% higher than after sprinter tamping for vertical profiles and 63% higher for twist measurements. 

Methodology 
Artificial Neural Network (ANN) 
     The work in this study employed a single-hidden-layer 
artificial neural network (ANN). This is also known as a 
multilayer perceptron. It is a feed-forward supervised learning 
algorithm, which requires a labelled data set during training. 
Figure 8 shows the architecture of such a model. Each neuron 
has an associated weight (𝑤𝑤𝑗𝑗𝑁𝑁𝑘𝑘) which connects it to the neurons 
of the previous layer and each layer also has bias values (𝑏𝑏𝑗𝑗𝑘𝑘), 
which can regulate when a neuron becomes meaningfully 
active. The data to be processed is of the form 𝐗𝐗 =
 {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} and is passed through the input layer to each neuron of the first hidden layer as a 
weighted sum of these values, based on its associated weights. This sum is then processed using an 
activation function before the output is passed onto the next layer. This is shown in the equation 
below.  

 𝑎𝑎𝑗𝑗1 =  𝑓𝑓(�𝑤𝑤𝑗𝑗𝑁𝑁1 × 𝑥𝑥𝑁𝑁 +  𝑏𝑏𝑗𝑗1)
𝑁𝑁

  (3) 

 
Here 𝑎𝑎𝑗𝑗1 is the output value of the jth neuron in the 1st hidden layer of the network; 𝑓𝑓(𝑥𝑥) is the layer 
activation function; the argument in the function is the value passed on to the hidden layer from the 
previous one. 𝑤𝑤𝑗𝑗𝑁𝑁1  is the weight connecting the jth neuron of the first hidden layer to the ith neuron of 
the input layer, 𝑥𝑥𝑁𝑁 is the value in the ith neuron of the input layer, and 𝑏𝑏𝑗𝑗1 is the bias of the jth neuron in 
the hidden layer. This process is then repeated, and the new weighted sum of the current layer is 
passed onto the next hidden layer (or the output layer if there is only one hidden layer in the model), 
where a new activation function is applied. This step can be represented using a more general 
expression for the entire layer: 

 𝑎𝑎𝑗𝑗𝑘𝑘 =  𝑓𝑓�𝑊𝑊𝑗𝑗𝑁𝑁
𝑘𝑘 × 𝑎𝑎𝑁𝑁𝑘𝑘−1 +  𝑏𝑏𝑗𝑗𝑘𝑘� = 𝑓𝑓(𝑧𝑧𝑗𝑗)  (4) 

 
Here, 𝑎𝑎𝑗𝑗𝑘𝑘= {a0, a1, …, an} is a vector containing neuron values from the kth layer (similarly for 𝑎𝑎𝑁𝑁𝑘𝑘−1), 
𝑊𝑊𝑗𝑗𝑁𝑁

𝑘𝑘 and 𝑏𝑏𝑗𝑗𝑘𝑘 are a matrix and a vector containing the weights and biases for the kth layer in the 
network, and 𝑧𝑧𝑗𝑗 is a simplified version of the argument inside the activation function. 

     There is a variety of activation functions available, some of the more popular ones are sigmoid 
functions, hyperbolic tangent, rectified linear unit (ReLU), among others (Fig. 9). The suitability of 
each one is often judged based on their differential properties. When the data reaches the output layer, 
a single value (or a vector) is produced which is indicative of the label of a given example (in the case 
of classifiers). During the training process, a set of training examples is passed through the network, 
the predicted labels are compared to the expected ones and the difference between the two is 
summarised using a loss function (L). The further away the predicted values are from the desired 
ones, the larger L will be. Similarly to activation functions, there is a variety of loss functions as well, 
which are well-suited for different problems. Mean Squared Error (MSE) for example is a popular 
loss function to use mainly in regression problems, although it is not appropriate for handling outliers 
in the data, since it squares the errors. Mean Absolute Error (MAE) on the other hand, is more robust 
when dealing with outliers and can also more effectively account for negative errors. There are a 

Figure 8. Single hidden layer ANN 
model schematic 
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number of other functions available, each of which may be more suitable for a specific problem and 
data set.  

 

 

 

 

 

 

 

 

Figure 9. Different activation functions 

     Initially, the model will not perform well on training data set, at which point a backpropagation 
process begins to minimize this loss function [28]. This is done using the stochastic gradient descent 
method [29]. Each time the loss function is calculated for a given set of examples, gradient descent 
works its way back to the input layer and corrects the trainable parameters (weights and biases) to 
reduce the loss. The passage of the entire training set in smaller batches of examples (or as a whole) is 
known as one epoch. Minimization works by estimating the sensitivity of the loss function with 
respect to the weights and biases at each layer, i.e., the gradient. Selecting the optimal activation and 
loss functions for the specific problem helps the convergence. To estimate the gradient, the chain rule 
is applied. 

 𝜕𝜕𝑁𝑁0
𝜕𝜕𝑊𝑊𝑗𝑗𝑁𝑁

𝑘𝑘 =  
𝜕𝜕𝑧𝑧𝑗𝑗𝑘𝑘

𝜕𝜕𝑊𝑊𝑗𝑗𝑁𝑁
𝑘𝑘 ×  

𝜕𝜕𝑎𝑎𝑗𝑗𝑘𝑘

𝜕𝜕𝑧𝑧𝑗𝑗𝑘𝑘
×
𝜕𝜕𝑁𝑁0
𝜕𝜕𝑎𝑎𝑗𝑗𝑘𝑘

 
 (5) 

 
Where 𝑁𝑁0 is the loss calculated from the first training example. The total loss is the average of all 
training examples. 

 𝜕𝜕𝑁𝑁
𝜕𝜕𝑊𝑊𝑘𝑘 =  

1
𝑁𝑁
�

𝜕𝜕𝑁𝑁𝑙𝑙
𝜕𝜕𝑊𝑊𝑘𝑘

𝑛𝑛−1

𝑙𝑙=0

 
 (6) 

 
This is the gradient of the loss only with respect to the weights at the kth layer. The same equation is 
applied with respect to the biases as well. The gradients with respect to weights and biases at each 
layer comprise the gradient vector ∇𝑁𝑁 = { 𝜕𝜕𝑁𝑁

𝜕𝜕𝑊𝑊1 , 𝜕𝜕𝑁𝑁
𝜕𝜕𝑏𝑏1

, … , 𝜕𝜕𝑁𝑁
𝜕𝜕𝑊𝑊𝑛𝑛 , 𝜕𝜕𝑁𝑁

𝜕𝜕𝑏𝑏𝑛𝑛
}. Each component of the gradient 

vector holds information about the sensitivity of the loss function with respect to the weights and 
biases at each layer. This process is repeated until L is sufficiently low, indicating that the model has 
learned crucial patterns in the data set and is able to predict labels at a high rate. Further details about 
the development and applications of Artificial Neural Networks can be found in [30]. 

Data processing and initial model implementation 
Track classification 
     A maintenance activity will not always result in the expected theoretical improvement in quality, 
since it is an imperfect event which can be affected by a number of factors. One of the goals of this 
study was to estimate an approximate rate of efficiency of tamping works i.e., how often an activity 
has made a noticeable improvement. Quality improvement here is defined as a reading at a unique 
location decreasing by at least 1-2 mm in between consecutive inspections. Variations smaller than 
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that are difficult to justify due to measurement accuracy. Similarly, an increase in readings of more 
than 1 mm was considered deterioration. The classification criterion selected is relative to the 
available data set. The threshold could be set higher for a different track which exhibits more 
significant changes in readings. However, the high-speed line analysed here is of very high quality 
and rapid settlement between inspections are extremely rare, making it implausible to train a model to 
recognize only larger changes. 

     To perform an initial classification, the track was broken down into small segments (50 metres 
long) and a number of features were extracted from the associated measurements. A single-hidden 
layer Artificial Neural Network (ANN) was employed using these features to classify each segment at 
a given point in time as “deteriorated” – class 1, “improved” – class 2, or “not changed” – class 3. 

Spatial alignment 
     Firstly, readings from the two inspections must be aligned spatially, so the peaks and troughs of the 
two signals match and allow for a comparison to be made. To do this, cross-correlation between the 
signals was used – this takes one of the signals and slides it across the other one, until a good match is 
found. This process is also known as a sliding dot product, which can indicate by how many steps the 
first set of measurements is lagging behind the second and the two can be aligned. Figure 10 displays 
the results from the operation. This process has been made automatic for all measurements. 

 

 

 

 

 

 

 

 

 

 

Estimation of deterioration rate 
     Once individual inspection readings have been aligned, the next step is the estimation of a rate of 
deterioration of track geometry. The following equation was developed: 

 
𝐷𝐷𝑒𝑒𝑁𝑁𝑒𝑒𝐷𝐷𝑁𝑁𝐷𝐷𝐷𝐷𝑎𝑎𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁 𝐷𝐷𝑎𝑎𝑁𝑁𝑒𝑒 =  

(|𝐷𝐷𝑒𝑒𝑎𝑎𝑟𝑟𝑁𝑁𝑁𝑁𝑟𝑟1| − |𝐷𝐷𝑒𝑒𝑎𝑎𝑟𝑟𝑁𝑁𝑁𝑁𝑟𝑟2|) ∗ 30
𝑇𝑇𝑁𝑁𝑇𝑇𝑒𝑒 𝑏𝑏𝑒𝑒𝑁𝑁𝑤𝑤𝑒𝑒𝑒𝑒𝑁𝑁 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑖𝑖 [𝑟𝑟𝑎𝑎𝑑𝑑𝑖𝑖]

 [
𝑇𝑇𝑇𝑇
𝑇𝑇𝐷𝐷𝑁𝑁𝑁𝑁ℎ

] 

 

 (7) 

 
Readings 1 and 2 are from two separate (consecutive) inspections. This is done for all individual 
readings from a segment. The difference between the two is divided by the number of days between 
inspections and multiplied by 30 to obtain an approximate deterioration rate in units of mm/month. 
The absolute values of the measurements have been used, as the difference between them will show if 
a reading is closer to or further away from an ideal track condition (zero measurement). This idea 
applies to both positive and negative geometry readings. A negative rate will indicate deterioration, 
whereas a positive value is showing an improvement. Figure 11 displays this – the top half of the 
figure is showing consecutive inspections, where the one in April 2014 (orange line) is showing 
improvement between 250m and 300m. This results in an increase in the rate of deterioration in the 

Figure 10. Signal alignment using cross-correlation 
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plot below it, which can be automatically detected. The bottom half of the figure is showing the same 
phenomenon, although for deterioration. Each segment on the track will produce a different set of 
rates, which are used to help classify its condition. The number of values in each set will be defined 
by the number of measurements in the segment (typically 250). Two features related to these sets are 
used as input to the neural network algorithm – the standard deviation and skewness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Other input features 
     The algorithm requires other features as well for optimal performance, the main of which is the 
ratio of the standard deviations of each inspection (SD1/SD2). If this ratio is very close to 1 (typically 
between 0.9 and 1.1), that means that little change has occurred since the most recent inspection, 
whereas a value much different from 1 indicates that there has been some change in the readings. 
Figure 12 shows how this ratio varies along with the SD of the deterioration rates in the same segment 
at different points in time. These are the two key input features necessary to detect a pattern in the 
data. 

 

Figure 11. Deterioration rates indicating improvement (top) and worsening (bottom) in quality. The 
blue and orange lines in the inspection comparison plots show the two consecutive inspections and 
the regions which have experienced a change. The deterioration plots show a rolling average for a 
smoother and more interpretable line. 
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Model training and performance 
     The network consists of 3 layers in total – an input layer, hidden, and an output layer (see Fig. 8). 
The number of neurons in each layer were varied, but it was found that the model performed best 
when the input layer consisted of 50 neurons, the hidden layer of 15, and 3 neurons in the output layer 
(one for each class). The initial weights of the model were generated using a random normal 
distribution: 

 
𝑓𝑓(𝑥𝑥) =

1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒−
(𝑥𝑥−𝜇𝜇)2
2𝜎𝜎2  

     (8) 

 
     It was found that a mean absolute error (MAE) loss function performed the best. The three classes 
indicating segment behaviour (improved, deteriorated, no change) were encoded, a ReLU activation 
function (equation 10) was used in the hidden layer and a SoftMax function (equation 11) was used 
for the output layer: 

 
𝑀𝑀𝑀𝑀𝑀𝑀 =

1
𝑁𝑁
� |𝑌𝑌𝑁𝑁 − 𝑌𝑌𝚤𝚤�
𝑛𝑛

𝑁𝑁=1

| 

 

 (9) 

 

 𝑓𝑓𝑁𝑁(�⃗�𝑥) =  max (0,𝑥𝑥)  (10) 

 
 

𝑓𝑓𝑁𝑁(�⃗�𝑥) =  
𝑒𝑒𝑥𝑥𝑖𝑖

∑ 𝑒𝑒𝑎𝑎𝑗𝑗𝑗𝑗
 

 (11) 

 
     The geometric feature used to train the network described here was top profile (35m), but the same 
technique has shown to be applicable to other parameters as well (twist and long-wave top profile). 
The training set consisted of approximately 4000 examples, but was later reduced to ~2500, due to an 
imbalance in the data. The majority of the examples were in class 3 (approximately 90%), due to the 
high quality of the track. This did not allow the model to train adequately [31], and therefore some of 
these examples were removed. 30% of the data was used for testing purposes during training, and the 
rest was used as training data. A further 25% of the training data was used for validation purposes.  

     Figure 13 shows the learning curve (accuracy) of the best performing model. It achieved an 
accuracy of approximately 98% on the validation set during training. Upon testing on a new unseen 
data set, the model exhibited a high sensitivity when classifying deterioration. This required further 
output processing, where segments with a SD1/SD2 ratio very close to 1 were manually changed to 
class 3. It is expected that given a different data set which shows more variation in measurements, the 

Figure 12. Variation of deterioration rate SD and standard deviations ratio (SD1/SD2) in a worsened portion of the track (left) 
and in an improved portion of the track (right) 
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model will be able to automatically make this distinction, although this was not available at the time 
of the study. 

 

 

 

 

 

 

 

 

 

     Following post-processing, the overall accuracy of the model on an unseen data set was 99.6%, 
although the data used for this evaluation was still highly imbalanced. The majority of the examples 
were class 3, which the network does not struggle to identify. The detection accuracy for class 2 
(maintenance) on the track was 88.9% and for class 1 (development of defects) – 77.5%. It is 
suspected that the better performance for detecting class 2 is partly due to the fact that maintenance 
results in a large absolute change in readings. On the other hand, deterioration is much more gradual 
and therefore not as statistically significant, making class 1 more difficult to detect. Upon closer 
examination, it was found that the weaker performance in identifying deterioration is mainly due to 
small variations which are very close to the decision boundary of the model. Figure 14 provides 
examples of the classification abilities of the developed model. 

Figure 13. Model accuracy during training 

Figure 14. Model comparison versus original measurements 
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     Such form of modelling work shows the potential of machine learning algorithms to process large 
amounts of track geometry data in a short time frame and their ability to detect anomalies in track 
behaviour. By performing this analysis, regions of the track experiencing settlement and requiring 
maintenance may be more accurately identified in order to remediation works where they are needed. 
Reducing the amount of healthy track being tamped will ensure preservation of ballast and the 
extension of the asset’s lifespan. 

Maintenance efficiency 
     Since the described algorithm is able to detect fault corrections on the track reasonably well 
(88.9%), it was cross-referenced with records of maintenance in order to estimate how much of the 
tamped track had actually improved. This was done for the primary types of maintenance – high 
output tamping, sprinter tamping/manual packing, and tamping on switches and crossings (S&C). 
S&C tamping is considered on its own since the track in those regions is unique and the effects may 
be different. Both short-wave (35m vertical profiles and twist) and long-wave (70m mean vertical 
profile) features were analysed. The percentage of track positively influenced after maintenance is 
shown in Table 3.  

Table 3. Estimated approximate maintenance efficiency 

Activity 
High output 

tamping 
Sprinter tamping/Manual 

packing 
S&C tamping 

Track segments with improved 
short-wave vertical profile 30.1% 78.1% 34.5% 

Track segments with improved 
twist (3m) 36.7% 67% 28.6% 

Overall amount of track segments 
with improved short-wave features 45.8% 84.9% 39.8% 

Track with improved long wave 
profile faults 36.9% 55.7% 35.8% 

Combined long- and short-wave 
features 52.5% 84% 45.6% 

     The top vertical profiles (short-wave) and the twist measurements have been examined separately, 
as well as together. Similarly, long-wave profile was also checked individually. All features were then 
combined to come up with an overall efficiency value. Not all of the tamping records indicate the 
exact locations of tamping, but a specific asset where several smaller segments have been tamped. 
The impact of this has been removed as much as possible, however it may still have a residual effect 
and reduce these values (mainly for high output tamping). In addition, while most of the maintenance 
activities are known, there are also some missing records of both high output tamping and sprinter 
tamping/manual packing. If the full records are available, the efficiency may be slightly higher. 

     A total of 858 50-metre segments were analysed for all specified geometrical features. 
Measurements cover a 10-year period (2007-2016) when maintenance records are available. Only a 
small portion of the segments which improved were in critical condition prior to the maintenance. In 
most cases, the associated readings were just large enough as to exhibit a noticeable change (>1mm) 
following corrections. As expected, high output tamping, which covers longer sections of track, has a 
lower efficiency than sprinter tamping across all features. This is due to the fact that when a longer 
segment of a track is tamped, the machine also covers areas where the ballast is in good condition. In 
that case the changes in readings are either not noticeable, or they may possibly become worse. The 
latter is a rare event, although it may still occur, especially after large-scale works. In some instances 
when the track appears to have deteriorated after maintenance, this may be due to a very quick 
recovery in readings shortly after a correction.  
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Conclusions and future work 
     This paper has explored the history of a high-speed railway line in the UK and investigated ways 
of automatically detecting sudden changes in track geometry measurements. The aim is to help assess 
the current state of the railway, as well as the efficiency of maintenance works. A large data set of 
track geometry measurements was analysed: 

1. An Artificial Neural Network was trained on the obtained data set to identify track segments 
exhibiting a change in quality in the period between inspections. 

2. The track was divided into three possible classes – showing an improved state (maintenance), 
showing a more deteriorated state since the last inspection, and showing no change. 

3. The first two of the above classes achieved an accuracy of 88.9% and 77.5%, respectively. 
4. The model was used to estimate how often specific types of maintenance activities have had 

a positive effect on a given segment. 
5. It was found that high output tamping, which is undertaken over longer sections of track, 

exhibits a lower rate of efficiency than local tamping works which are used for removing 
individual defects. The explanation for this is that when tamping is undertaken on a large 
scale, the machine will also tamp track of high quality, which will show no noticeable 
improvements, or possibly deterioration.  

6. Historically, the decision of whether to tamp a track is largely based on the progression of the 
standard deviation of a certain geometric feature from a 200-metre track segment, or another 
similar index. However, it is suggested here that these measures may be sensitive to the 
development of individual defects and inaccurately indicate faults in the entire segment. In 
this study, a shorter segment length of 50 metres was used aiming to better localise the 
development of faults. 

7. Using the analysis techniques shown in this paper one will be able to plan more cost effective 
and targeted tamping campaigns. It may prove more cost effective to use sprinter tamping 
and local hand packing at specific selected sites. Where long sections of track are 
deteriorated, high output tampers would be more appropriate.  

     Since track faults appear to be mainly affecting local regions, it will be beneficial to detect their 
more exact location. Future research will include the optimization of similar models aimed at 
monitoring the development of such faults more closely, as well and identifying specific reasons for 
deterioration. In doing so, root-causes of faults can be removed and track quality stabilised in the 
long-term. 
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