101 research outputs found

    Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study

    Get PDF
    INTRODUCTION: Magnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging protocol at 7 T. For comparison an established stroke imaging protocol was applied at 3 T. METHODS: In a prospective imaging study seven patients with subacute and chronic stroke were included. Imaging at 3 T was immediately followed by 7 T imaging. Both protocols included T1-weighted 3D Magnetization-Prepared Rapid-Acquired Gradient-Echo (3D-MPRAGE), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-FLAIR), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-T2-TSE), T2* weighted 2D Fast Low Angle Shot Gradient Echo (2D-HemoFLASH) and 3D Time-of-Flight angiography (3D-TOF). RESULTS: The diagnostic information relevant for clinical stroke imaging obtained at 3 T was equally available at 7 T. Higher spatial resolution at 7 T revealed more anatomical details precisely depicting ischemic lesions and periinfarct alterations. A clear benefit in anatomical resolution was also demonstrated for vessel imaging at 7 T. RF power deposition constraints induced scan time prolongation and reduced brain coverage for 2D-FLAIR, 2D-T2-TSE and 3D-TOF at 7 T versus 3 T. CONCLUSIONS: The potential of 7 T MRI for human stroke imaging is shown. Our pilot study encourages a further evaluation of the diagnostic benefit of stroke imaging at 7 T in a larger study

    Don’t make me angry, you wouldn’t like me when I’m angry: volitional choices to act or inhibit are modulated by subliminal perception of emotional faces

    Get PDF
    Volitional action and self-control—feelings of acting according to one’s own intentions and in being control of one’s own actions—are fundamental aspects of human conscious experience. However, it is unknown whether high-level cognitive control mechanisms are affected by socially salient but nonconscious emotional cues. In this study, we manipulated free choice decisions to act or withhold an action by subliminally presenting emotional faces: In a novel version of the Go/NoGo paradigm, participants made speeded button-press responses to Go targets, withheld responses to NoGo targets, and made spontaneous, free choices to execute or withhold the response for Choice targets. Before each target, we presented emotional faces, backwards masked to render them nonconscious. In Intentional trials, subliminal angry faces made participants more likely to voluntarily withhold the action, whereas fearful and happy faces had no effects. In a second experiment, the faces were made supraliminal, which eliminated the effects of angry faces on volitional choices. A third experiment measured neural correlates of the effects of subliminal angry faces on intentional choice using EEG. After replicating the behavioural results found in Experiment 1, we identified a frontal-midline theta component—associated with cognitive control processes—which is present for volitional decisions, and is modulated by subliminal angry faces. This suggests a mechanism whereby subliminally presented “threat” stimuli affect conscious control processes. In summary, nonconscious perception of angry faces increases choices to inhibit, and subliminal influences on volitional action are deep seated and ecologically embedded

    The Flexible Nature of Unconscious Cognition

    Get PDF
    The cognitive signature of unconscious processes is hotly debated recently. Generally, consciousness is thought to mediate flexible, adaptive and goal-directed behavior, but in the last decade unconscious processing has rapidly gained ground on traditional conscious territory. In this study we demonstrate that the scope and impact of unconscious information on behavior and brain activity can be modulated dynamically on a trial-by-trial basis. Participants performed a Go/No-Go experiment in which an unconscious (masked) stimulus preceding a conscious target could be associated with either a Go or No-Go response. Importantly, the mapping of stimuli onto these actions varied on a trial-by-trial basis, preventing the formation of stable associations and hence the possibility that unconscious stimuli automatically activate these control actions. By eliminating stimulus-response associations established through practice we demonstrate that unconscious information can be processed in a flexible and adaptive manner. In this experiment we show that the same unconscious stimulus can have a substantially different effect on behavior and (prefrontal) brain activity depending on the rapidly changing task context in which it is presented. This work suggests that unconscious information processing shares many sophisticated characteristics (including flexibility and context-specificity) with its conscious counterpart

    Post-mortem assessment in vascular dementia: advances and aspirations.

    Get PDF
    BACKGROUND: Cerebrovascular lesions are a frequent finding in the elderly population. However, the impact of these lesions on cognitive performance, the prevalence of vascular dementia, and the pathophysiology behind characteristic in vivo imaging findings are subject to controversy. Moreover, there are no standardised criteria for the neuropathological assessment of cerebrovascular disease or its related lesions in human post-mortem brains, and conventional histological techniques may indeed be insufficient to fully reflect the consequences of cerebrovascular disease. DISCUSSION: Here, we review and discuss both the neuropathological and in vivo imaging characteristics of cerebrovascular disease, prevalence rates of vascular dementia, and clinico-pathological correlations. We also discuss the frequent comorbidity of cerebrovascular pathology and Alzheimer's disease pathology, as well as the difficult and controversial issue of clinically differentiating between Alzheimer's disease, vascular dementia and mixed Alzheimer's disease/vascular dementia. Finally, we consider additional novel approaches to complement and enhance current post-mortem assessment of cerebral human tissue. CONCLUSION: Elucidation of the pathophysiology of cerebrovascular disease, clarification of characteristic findings of in vivo imaging and knowledge about the impact of combined pathologies are needed to improve the diagnostic accuracy of clinical diagnoses

    Supplementary Material for: Association of Mild Kidney Dysfunction with Silent Brain Lesions in Neurologically Normal Subjects

    No full text
    <b><i>Background:</i></b> Chronic kidney disease (CKD) has been closely associated with stroke. Although a large number of studies reported the relationship between CKD and different types of asymptomatic brain lesions, few comprehensive analyses have been performed for all types of silent brain lesions. <b><i>Methods:</i></b> We performed a cross-sectional study involving 1,937 neurologically normal subjects (mean age 59.4 years). Mild CKD was defined as an estimated glomerular filtration rate between 30 and 60 ml/min/1.73 m<sup>2</sup> or positive proteinuria. <b><i>Results:</i></b> The prevalence of mild CKD was 8.7%. Univariate analysis revealed an association between CKD and all silent brain lesions, including silent brain infarction, periventricular hyperintensity, subcortical white matter lesion, and microbleeds, in addition to hypertension and diabetes mellitus after adjusting for age and sex. In binary logistic regression analysis, the presence of CKD was a significant risk factor for all types of silent brain lesions, independent of other risk factors. <b><i>Conclusions:</i></b> These results suggest that mild CKD is independently associated with all types of silent brain lesions, even in neurologically normal subjects
    • 

    corecore