694 research outputs found

    The fate of spiral galaxies in clusters: The star formation history of the anemic Virgo cluster galaxy NGC 4569

    Get PDF
    We present a new method for studying the star formation history of late-type cluster galaxies undergoing gas starvation or a ram pressure stripping event by combining bidimensional multifrequency observations with multizone models of galactic chemical and spectrophotometric evolution. This method is applied to the Virgo Cluster anemic galaxy NGC 4569. We extract radial profiles from recently obtained UV GALEX images at 1530 and 2310 Å, from visible and near-IR narrow (Hα) and broadband images at different wavelengths (u, B, g, V, r, i, z, J, H, and K), from Spitzer IRAC and MIPS images, and from atomic and molecular gas maps. The model in the absence of interaction (characterized by its rotation velocity and spin parameter) is constrained by the unperturbed H-band light profile and by the Hα rotation curve. We can reconstruct the observed total gas radial density profile and the light surface brightness profiles at all wavelengths in a ram pressure stripping scenario by making simple assumptions about the gas removal process and the orbit of NGC 4569 inside the cluster. The observed profiles cannot be reproduced by simply stopping gas infall, thus mimicking starvation. Gas removal is required, which is more efficient in the outer disk, inducing radial quenching in the star formation activity, as observed and reproduced by the model. This observational result, consistent with theoretical predictions that a galaxy cluster-IGM interaction is able to modify structural disk parameters without gravitational perturbations, is discussed in the framework of the origin of lenticular galaxies in cluster

    Hydrogen Isocyanide in Comet 73P/Schwassmann-Wachmann (Fragment B)

    Get PDF
    We present a sensitive 3-sigma upper limit of 1.1% for the HNC/HCN abundance ratio in comet 73P/Schwassmann-Wachmann (Fragment B), obtained on May 10-11, 2006 using Caltech Submillimeter Observatory (CSO). This limit is a factor of ~7 lower than the values measured previously in moderately active comets at 1 AU from the Sun. Comet 73P/Schwassmann-Wachmann was depleted in most volatile species, except of HCN. The low HNC/HCN ratio thus argues against HNC production from polymers produced from HCN. However, thermal degradation of macromolecules, or polymers, produced from ammonia and carbon compounds, such as acetylene, methane, or ethane appears a plausible explanation for the observed variations of the HNC/HCN ratio in moderately active comets, including the very low ratio in comet 73P/Schwassmann-Wachmann reported here. Similar polymers have been invoked previously to explain anomalous 14N/15N ratios measured in cometary CN.Comment: 6 pages, 5 figures, 2 table

    The effect of the environment on the HI scaling relations

    Full text link
    We use a volume-, magnitude-limited sample of nearby galaxies to investigate the effect of the environment on the HI scaling relations. We confirm that the HI-to-stellar mass ratio anti correlates with stellar mass, stellar mass surface density and NUV-r colour across the whole range of parameters covered by our sample (10^9 <M*<10^11 Msol, 7.5 <mu*<9.5 Msol kpc^-2, 2<NUV-r<6 mag). These scaling relations are also followed by galaxies in the Virgo cluster, although they are significantly offset towards lower gas content. Interestingly, the difference between field and cluster galaxies gradually decreases moving towards massive, bulge-dominated systems. By comparing our data with the predictions of chemo-spectrophotometric models of galaxy evolution, we show that starvation alone cannot explain the low gas content of Virgo spirals and that only ram-pressure stripping is able to reproduce our findings. Finally, motivated by previous studies, we investigate the use of a plane obtained from the relations between the HI-to-stellar mass ratio, stellar mass surface density and NUV-r colour as a proxy for the HI deficiency parameter. We show that the distance from the `HI gas fraction plane' can be used as an alternative estimate for the HI deficiency, but only if carefully calibrated on pre-defined samples of `unperturbed' systems.Comment: Accepted for publication on MNRAS main journal. 11 pages, 6 figures, 1 tabl

    The properties of the Malin 1 galaxy giant disk: A panchromatic view from the NGVS and GUViCS surveys

    Get PDF
    Low surface brightness galaxies (LSBGs) represent a significant percentage of local galaxies but their formation and evolution remain elusive. They may hold crucial information for our understanding of many key issues (i.e., census of baryonic and dark matter, star formation in the low density regime, mass function). The most massive examples - the so called giant LSBGs - can be as massive as the Milky Way, but with this mass being distributed in a much larger disk. Malin 1 is an iconic giant LSBG, perhaps the largest disk galaxy known. We attempt to bring new insights on its structure and evolution on the basis of new images covering a wide range in wavelength. We have computed surface brightness profiles (and average surface brightnesses in 16 regions of interest), in six photometric bands (FUV, NUV, u, g, i, z). We compared these data to various models, testing a variety of assumptions concerning the formation and evolution of Malin 1. We find that the surface brightness and color profiles can be reproduced by a long and quiet star-formation history due to the low surface density; no significant event, such as a collision, is necessary. Such quiet star formation across the giant disk is obtained in a disk model calibrated for the Milky Way, but with an angular momentum approximately 20 times larger. Signs of small variations of the star-formation history are indicated by the diversity of ages found when different regions within the galaxy are intercompared.For the first time, panchromatic images of Malin 1 are used to constrain the stellar populations and the history of this iconic example among giant LSBGs. Based on our model, the extreme disk of Malin 1 is found to have a long history of relatively low star formation (about 2 Msun/yr). Our model allows us to make predictions on its stellar mass and metallicity.Comment: Accepted in Astronomy and Astrophysic

    Detection of CO and HCN in Pluto's atmosphere with ALMA

    Full text link
    Observations of the Pluto-Charon system, acquired with the ALMA interferometer on June 12-13, 2015, have yielded a detection of the CO(3-2) and HCN(4-3) rotational transitions from Pluto, providing a strong confirmation of the presence of CO, and the first observation of HCN, in Pluto's atmosphere. The CO and HCN lines probe Pluto's atmosphere up to ~450 km and ~900 km altitude, respectively. The CO detection yields (i) a much improved determination of the CO mole fraction, as 515+/-40 ppm for a 12 ubar surface pressure (ii) clear evidence for a well-marked temperature decrease (i.e., mesosphere) above the 30-50 km stratopause and a best-determined temperature of 70+/-2 K at 300 km, in agreement with recent inferences from New Horizons / Alice solar occultation data. The HCN line shape implies a high abundance of this species in the upper atmosphere, with a mole fraction >1.5x10-5 above 450 km and a value of 4x10-5 near 800 km. The large HCN abundance and the cold upper atmosphere imply supersaturation of HCN to a degree (7-8 orders of magnitude) hitherto unseen in planetary atmospheres, probably due to the slow kinetics of condensation at the low pressure and temperature conditions of Pluto's upper atmosphere. HCN is also present in the bottom ~100 km of the atmosphere, with a 10-8 - 10-7 mole fraction; this implies either HCN saturation or undersaturation there, depending on the precise stratopause temperature. The HCN column is (1.6+/-0.4)x10^14 cm-2, suggesting a surface-referred net production rate of ~2x10^7 cm-2s-1. Although HCN rotational line cooling affects Pluto's atmosphere heat budget, the amounts determined in this study are insufficient to explain the well-marked mesosphere and upper atmosphere's ~70 K temperature. We finally report an upper limit on the HC3N column density (< 2x10^13 cm-2) and on the HC15N / HC14N ratio (< 1/125).Comment: Revised version. Icarus, in press, Oct. 11, 2016. 57 pages, including 13 figures and 4 table

    Pinning down the ram-pressure-induced halt of star formation in the Virgo cluster spiral galaxy NGC 4388. A joint inversion of spectroscopic and photometric data

    Full text link
    In a galaxy cluster, the evolution of spiral galaxies depends on their cluster environment. Ram pressure due to the rapid motion of a spiral galaxy within the hot intracluster medium removes the galaxy's interstellar medium from the outer disk. Once the gas has left the disk, star formation stops. The passive evolution of the stellar populations should be detectable in optical spectroscopy and multi-wavelength photometry. The goal of our study is to recover the stripping age of the Virgo spiral galaxy NGC 4388, i.e. the time elapsed since the halt of star formation in the outer galactic disk using a combined analysis of optical spectra and photometry. We performed VLT FORS2 long-slit spectroscopy of the inner star-forming and outer gas-free disk of NGC 4388. We developed a non-parametric inversion tool that allows us to reconstruct the star formation history of a galaxy from spectroscopy and photometry. The tool was tested on a series of mock data using Monte Carlo simulations. The results from the non-parametric inversion were refined by applying a parametric inversion method. The star formation history of the unperturbed galactic disk is flat. The non-parametric method yields a rapid decline of star formation < 200 Myr ago in the outer disk. The parametric method is not able to distinguish between an instantaneous and a long-lasting star formation truncation. The time since the star formation has dropped by a factor of two from its pre-stripping value is 190 +- 30 Myr. We are able to give a precise stripping age that is consistent with revised dynamical models.Comment: 12 pages, 10 figures, accepted for publication in A&

    UV properties of early-type galaxies in the Virgo cluster

    Get PDF
    We study the UV properties of a volume limited sample of early-type galaxies in the Virgo cluster combining new GALEX far- (1530 A) and near-ultraviolet (2310 A) data with spectro-photometric data available at other wavelengths. The sample includes 264 ellipticals, lenticulars and dwarfs spanning a large range in luminosity (M(B)<-15). While the NUV to optical or near-IR color magnitude relations (CMR) are similar to those observed at optical wavelengths, with a monotonic reddening of the color index with increasing luminosity, the (FUV-V) and (FUV-H) CMRs show a discontinuity between massive and dwarf objects. An even more pronounced dichotomy is observed in the (FUV-NUV) CMR. For ellipticals the (FUV-NUV) color becomes bluer with increasing luminosity and with increasing reddening of the optical or near-IR color indices. For the dwarfs the opposite trend is observed. These observational evidences are consistent with the idea that the UV emission is dominated by hot, evolved stars in giant systems, while in dwarf ellipticals residual star formation activity is more common.Comment: 5 pages, 2 figures, 1 table. Accepted for publication in Astrophysical Journal Letter
    • 

    corecore