183 research outputs found

    Isolation and characterization of genes involved in DNA damage response and telomere maintenance in Caenorhabditis elegans

    Get PDF
    Many cells, including somatic cells, are mortal, they divide a set number of times and then senesce or undergo cell death. However, germline and cancer cells have the ability to divide indefinitely and are thus considered immortal. In an attempt to better understand how cellular immortality is maintained I have been studying the pathways needed to maintain germline immortality in the nematode C. elegans. Several genes in various genome stability pathways have been identified to be exclusively activated in both cancer and germ cells suggesting they are important for cellular immortality. One pathway is the length maintenance of telomeres, the ends of chromosomes. Previously, members of the Rad9/Rad1/Hus1 DNA damage response complex were identified in C. elegans as being essential not only for germline immortality but also telomere maintenance. Based on these findings, two independent forward genetic screens were conducted to identify other genes involved in DNA damage response and telomere maintenance by first selecting for mutants that are hypersensitive to ionizing radiation (which causes double-strand DNA breaks) or resistant to hydroxyurea (which triggers S-phase cell cycle arrest) and then for the Mortal Germline phenotype, sterility after propagation for multiple generations. One mutant allele, yp4, was isolated as being resistant to hydroxyurea and is highly defective for cell cycle arrest in response to both ionizing radiation and hydroxyurea. Further characterization of yp4 revealed that it is required for germline immortality and displays phenotypes indicative of progressive telomere shortening. Additionally, a reverse genetic screen identified hpr-17, which encodes a Rad17 homolog, as being the RFC clamp loader that facilitates the Rad9/Rad1/Hus1 complex activity in response to DNA damage and in telomerase-mediated telomere replication. Aside from the two genes identified to be involved in telomere maintenance, 15 radiation hypersensitive mutants were isolated that carry mutations in genes that are essential for germline immortality at 25°C, whereas 32 hydroxyurea resistant mutants were isolated that are essential for germline immortality at all temperatures. Further analysis of DNA damage response pathways revealed the mutants isolated represent a number of genes that play roles in cell cycle arrest and/or apoptosis. These mortal germline mutants suggest that at least two DNA damage response pathways, independent of telomerase, are required for maintenance of germ cell immortality

    Mechanotransductive feedback control of endothelial cell motility and vascular morphogenesis

    Get PDF
    Vascular morphogenesis requires persistent endothelial cell motility that is responsive to diverse and dynamic mechanical stimuli. Here, we interrogated the mechanotransductive feedback dynamics that govern endothelial cell motility and vascular morphogenesis. We show that the transcriptional regulators, YAP and TAZ, are activated by mechanical cues to transcriptionally limit cytoskeletal and focal adhesion maturation, forming a conserved mechanotransductive feedback loop that mediates human endothelial cell motility in vitro and zebrafish intersegmental vessel (ISV) morphogenesis in vivo. This feedback loop closes in 4 hours, achieving cytoskeletal equilibrium in 8 hours. Feedback loop inhibition arrested endothelial cell migration in vitro and ISV morphogenesis in vivo. Inhibitor washout at 3 hrs, prior to feedback loop closure, restored vessel growth, but washout at 8 hours, longer than the feedback timescale, did not, establishing lower and upper bounds for feedback kinetics in vivo. Mechanistically, YAP and TAZ induced transcriptional suppression of myosin II activity to maintain dynamic cytoskeletal equilibria. Together, these data establish the mechanoresponsive dynamics of a transcriptional feedback loop necessary for persistent endothelial cell migration and vascular morphogenesis

    YAP and TAZ Mediate Osteocyte Perilacunar/Canalicular Remodeling

    Get PDF
    Bone fragility fractures are caused by low bone mass or impaired bone quality. Osteoblast/osteoclast coordination determines bone mass, but the factors that control bone quality are poorly understood. Osteocytes regulate osteoblast and osteoclast activity on bone surfaces but can also directly reorganize the bone matrix to improve bone quality through perilacunar/canalicular remodeling; however, the molecular mechanisms remain unclear. We previously found that deleting the transcriptional regulators Yes-associated protein (YAP) and Transcriptional co-activator with PDZ-motif (TAZ) from osteoblast-lineage cells caused lethality in mice due to skeletal fragility. Here, we tested the hypothesis that YAP and TAZ regulate osteocyte-mediated bone remodeling by conditional ablation of both YAP and TAZ from mouse osteocytes using 8kb-DMP1-Cre. Osteocyte-conditional YAP/TAZ deletion reduced bone mass and dysregulated matrix collagen content and organization, which together decreased bone mechanical properties. Further, YAP/TAZ deletion impaired osteocyte perilacunar/canalicular remodeling by reducing canalicular network density, length, and branching, as well as perilacunar flourochrome-labeled mineral deposition. Consistent with recent studies identifying TGF-β as a key inducer of osteocyte expression of matrix-remodeling enzymes, YAP/TAZ deletion in vivo decreased osteocyte expression of matrix proteases MMP13, MMP14, and CTSK. In vitro, pharmacologic inhibition of YAP/TAZ transcriptional activity in osteocyte-like cells abrogated TGF-β-induced matrix protease gene expression. Together, these data show that YAP and TAZ control bone matrix accrual, organization, and mechanical properties by regulating osteocyte-mediated bone remodeling. Elucidating the signaling pathways that control perilacunar/canalicular remodeling may enable future therapeutic targeting of bone quality to reverse skeletal fragility

    Discovery of os cordis in the cardiac skeleton of chimpanzees (Pan troglodytes)

    Get PDF
    Cardiovascular diseases, especially idiopathic myocardial fibrosis, is one of the most significant causes of morbidity and mortality in captive great apes. This study compared the structure and morphology of 16 hearts from chimpanzees (Pan troglodytes) which were either healthy or affected by myocardial fibrosis using X-ray microtomography. In four hearts, a single, hyperdense structure was detected within the right fibrous trigone of the cardiac skeleton. High resolution scans and histopathology revealed trabecular bones in two cases, hyaline cartilage in another case and a focus of mineralised fibro-cartilaginous metaplasia with endochondral ossification in the last case. Four other animals presented with multiple foci of ectopic calcification within the walls of the great vessels. All hearts affected by marked myocardial fibrosis presented with bone or cartilage formation, and increased collagen levels in tissues adjacent to the bone/cartilage, while unaffected hearts did not present with os cordis or cartilago cordis. The presence of an os cordis has been described in some ruminants, camelids, and otters, but never in great apes. This novel research indicates that an os cordis and cartilago cordis is present in some chimpanzees, particularly those affected by myocardial fibrosis, and could influence the risk of cardiac arrhythmias and sudden death

    Taming the tiger by the tail: modulation of DNA damage responses by telomeres

    Get PDF
    Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell-cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell-cycle division are discussed

    Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves

    Get PDF
    International audienceDifferentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascu-lar networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous , resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally , our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types
    • …
    corecore