30 research outputs found

    On the Functional Relationship Between Fluorescence and Photochemical Yields in Complex Evergreen Needleleaf Canopies

    Get PDF
    Recent advancements in understanding remotely sensed solar‐induced chlorophyll fluorescence often suggest a linear relationship with gross primary productivity at large spatial scales. However, the quantum yields of fluorescence and photochemistry are not linearly related, and this relationship is largely driven by irradiance. This raises questions about the mechanistic basis of observed linearity from complex canopies that experience heterogeneous irradiance regimes at subcanopy scales. We present empirical data from two evergreen forest sites that demonstrate a nonlinear relationship between needle‐scale observations of steady‐state fluorescence yield and photochemical yield under ambient irradiance. We show that accounting for subcanopy and diurnal patterns of irradiance can help identify the physiological constraints on needle‐scale fluorescence at 70–80% accuracy. Our findings are placed in the context of how solar‐induced chlorophyll fluorescence observations from spaceborne sensors relate to diurnal variation in canopy‐scale physiology

    Reduction in primary production followed by rapid recovery of plant biomass in response to repeated mid-season droughts in a semiarid shrubland

    Get PDF
    The frequency and severity of extreme weather events, including droughts, are expected to increase due to the climate change. Climate manipulation field experiments are widely used tools to study the response of key parameters like primary production to the treatments. Our study aimed to detect the effect of drought on the aboveground biomass and primary production both during the treatments as well as during the whole growing seasons in semiarid vegetation. We estimated aboveground green biomass of vascular plants in a Pannonian sand forest-steppe ecosystem in Hungary. We applied non-destructive field remote sensing method in control and drought treatments. Drought treatment was carried out by precipitation exclusion in May and June, and was repeated in each year from 2002. We measured NDVI before the drought treatment, right after the treatment, and at the end of the summer in 2011 and 2013. We found that the yearly biomass peaks, measured in control plots after the treatment periods, were decreased or absent in drought treatment plots, and consequently, the aboveground net primary production was smaller than in the control plots. At the same time, we did not find general drought effects on all biomass data. The studied ecosystem proved resilient, as the biomass in the drought-treated plots recovered by the next drought treatment. We conclude that the effect of drought treatment can be overestimated with only one measurement at the time of the peak biomass, while multiple within-year measurements better describe the response of biomass

    Adjunctive dexamethasone in adults with meningococcal meningitis

    No full text

    ILAE Neuroimaging Task Force Highlight: harnessing optimized imaging protocols for drug-resistant childhood epilepsy

    No full text
    The ILAE Neuroimaging Task Force aims to publish educational case reports highlighting basic aspects related to neuroimaging in epilepsy consistent with the educational mission of the ILAE. Previous quantitative MRI studies have established important imaging markers of epilepsy-related pathology, including features sensitive to hippocampal cell loss and reactive astrogliosis. Here, we review the case of a female with pediatric drug-resistant epilepsy. Throughout her course of treatment, she had seven MRI investigations at several centers; the first three did not follow optimized epilepsy imaging protocols whereas the remaining four adhered to HARNESS-MRI protocols (harmonized neuroimaging of epilepsy structural sequences). Visual inspection of a set of HARNESS-MR images revealed conspicuous left hippocampal hyperintensity which may have been initially overlooked on non-optimized MR images. Quantitative analysis of these multimodal imaging data along hippocampal subfields provided clear evidence of hippocampal sclerosis, with increased atrophy, increased mean diffusivity, increased T2-FLAIR signal, and lower qT1 values observed in the anterior portions of the left, compared to the right hippocampus. The patient underwent a left anterior temporal lobectomy with amygdalohippocampectomy at age 16 years. Histopathology of the resected specimen also confirmed hippocampal sclerosis with widespread gliosis and focal neuronal loss in the hippocampal subfields overlapping with regions of multimodal quantitative alterations. The patient remains seizure-free one year after surgery. Collectively, this case highlights the need for optimized data acquisition protocols early in the treatment of epilepsy and supports quantitative analysis of MRI contrasts to enhance personalized diagnosis and prognosis of drug-resistant patients with epilepsy

    Tundra carbon balance under varying temperature and moisture regimes

    No full text
    To understand the effects of environmental change on tundra carbon balance, a manipulation experiment was performed in wet sedge tundra near Barrow, Alaska. Three replicates of six environmental treatments were made: control, heating, raising or lowering water table, and heating along with raising or lowering water table. Carbon fluxes were measured using a portable chamber for six days during the 2001 growing season. Spectral reflectance and meteorological measurements were also collected. Empirical models derived from flux measurements were developed for daily gross ecosystem production (GEP) and ecosystem respiration (Re). The amount of photosynthetically active radiation absorbed by the plants was strongly correlated with GEP. This relationship was not affected by treatment or time during the growing season. Re was related to soil temperature with a different relationship for each water level treatment. Re in the lowered water table treatment had a strong response to temperature changes, while the raised water table treatment showed little temperature response. These models calculated daily net ecosystem exchange for all of the treatments over the growing season. Warming increased both the seasonal carbon gain and carbon loss. By the end of summer the lowered water table treatments, both heated and unheated, were net carbon sources while all other treatments were sinks. Warming and/or raising the water table increased the strength of the net sink. Over the timescale of this experiment, water table primarily determined whether the ecosystem was a source or sink, with temperature modifying the strength of the source or sink

    Future emerging technologies in the wind power sector: A European perspective

    Get PDF
    This paper represents an expert view from Europe of future emerging technologies within the wind energy sector considering their potential, challenges, applications and technology readiness and how they might evolve in the coming years. These technologies were identified as originating primarily from the academic sector, some start-up companies and a few larger industrial entities. The following areas were considered: airborne wind energy, offshore floating concepts, smart rotors, wind-induced energy harvesting devices, blade tip-mounted rotors, unconventional power transmission systems, multi-rotor turbines, alternative support structures, modular high voltage direct current generators, innovative blade manufacturing techniques, diffuser-augmented turbines and small turbine technologies. The future role of advanced multiscale modelling and data availability is also considered. This expert review has highlighted that more research will be required to realise many of these emerging technologies. However, there is a need to identify synergies between fundamental and industrial research by correctly targeting public and private funding in these emerging technology areas as industrial development may outpace more fundamental research faster than anticipated
    corecore