44 research outputs found

    Kinetics of low pressure ammonia oxidation over Rh(111)

    Get PDF
    The kinetics of the NH3 + O2 reaction over a Rh(111) single crystal catalytic surface was explored in the 10-6 mbar pressure range at tempera-tures between 300-900 K. Selectivity towards N2 and NO products, and reactive sticking coefficients were monitored in situ using differentially pumped quad-rupole mass spectroscopy (QMS). © 2018, Latin American Applied Research

    Optical stimulated-Raman sideband spectroscopy of a single 9Be+ ion in a Penning trap

    Get PDF
    We demonstrate optical sideband spectroscopy of a single 9Be+ ion in a cryogenic 5 tesla Penning trap using two-photon stimulated-Raman transitions between the two Zeeman sublevels of the 1s22s ground state manifold. By applying two complementary coupling schemes, we accurately measure Raman resonances with and without contributions from motional sidebands. From the latter we obtain an axial sideband spectrum with an effective mode temperature of (3.1±0.4) mK. These results are a key step for quantum logic operations in Penning traps, applicable to high-precision matter-antimatter comparison tests in the baryonic sector of the standard model

    Coupling of morphological instability and kinetic instability: Chemical waves in hydrogen oxidation on a bimetallic Ni/Rh(111) surface

    Get PDF
    The oxidation and reduction of a bimetallic Ni/Rh model catalyst during the water forming O2+H2 reaction is studied with low-energy electron microscopy, microspot-low-energy electron diffraction, and x-ray photoemission electron microscopy. Oxidation of a submonolayer Ni film results in the formation of three-dimensional (3D) NiO nanoparticles. Reduction of 3D-NiO in H2 produces a dispersed two-dimensional film of metallic Ni. Chemical waves during the O2+H2 reaction involve a cyclic transformation between 3D-NiO and 2D-NiO

    Resolved-sideband cooling of a single 9^9Be+^+ ion in a Penning trap

    Full text link
    Manipulating individual trapped ions at the single quantum level has become standard practice in radio-frequency ion traps, enabling applications from quantum information processing to precision metrology. The key ingredient is ground-state cooling of the particle's motion through resolved-sideband laser cooling. Ultra-high-presicion experiments using Penning ion traps will greatly benefit from the reduction of systematic errors offered by full motional control, with applications to atomic masses and gg-factor measurements, determinations of fundamental constants or related tests of fundamental physics. In addition, it will allow to implement quantum logic spectroscopy, a technique that has enabled a new class of precision measurements in radio-frequency ion traps. Here we demonstrate resolved-sideband laser cooling of the axial motion of a single 9^9Be+^+ ion in a cryogenic 5 Tesla Penning trap system using a two-photon stimulated-Raman process, reaching a mean phonon number of nˉz=0.10(4)\bar{n}_z = 0.10(4). This is a fundamental step in the implementation of quantum logic spectroscopy for matter-antimatter comparison tests in the baryonic sector of the Standard Model and a key step towards improved precision experiments in Penning traps operating at the quantum limit.Comment: 6 pages, 5 figure

    Probe field ellipticity-induced shift in an atomic clock

    Full text link
    We investigate the probe field induced shift for atomic lattice-based and ion-trap clocks, which can be considered as a near resonant ac-Stark shift, connected to the Zeeman structure of atomic levels and their splitting in a dc magnetic field. This shift arises from possible residual ellipticity in the polarization of the probe field and uncertainty in the magnetic field orientation. Such a shift can have an arbitrary sign and, for some experimental conditions, can reach the fractional value of the order of 1018^{-18}-1019^{-19}, i.e., it is not negligible. Thus, it should be taken into account in the uncertainty budgets for the modern ultra-precise atomic clocks. In addition, it is shown that when using hyper-Ramsey spectroscopy, this shift can be reduced to a level much lower than 101910^{-19}.Comment: 8 pages, 6 figure

    Report from the EPAA workshop: In vitro ADME in safety testing used by EPAA industry sectors

    Get PDF
    AbstractThere are now numerous in vitro and in silico ADME alternatives to in vivo assays but how do different industries incorporate them into their decision tree approaches for risk assessment, bearing in mind that the chemicals tested are intended for widely varying purposes? The extent of the use of animal tests is mainly driven by regulations or by the lack of a suitable in vitro model. Therefore, what considerations are needed for alternative models and how can they be improved so that they can be used as part of the risk assessment process? To address these issues, the European Partnership for Alternative Approaches to Animal Testing (EPAA) working group on prioritisation, promotion and implementation of the 3Rs research held a workshop in November, 2008 in Duesseldorf, Germany. Participants included different industry sectors such as pharmaceuticals, cosmetics, industrial- and agro-chemicals. This report describes the outcome of the discussions and recommendations (a) to reduce the number of animals used for determining the ADME properties of chemicals and (b) for considerations and actions regarding in vitro and in silico assays. These included: standardisation and promotion of in vitro assays so that they may become accepted by regulators; increased availability of industry in vivo kinetic data for a central database to increase the power of in silico predictions; expansion of the applicability domains of in vitro and in silico tools (which are not necessarily more applicable or even exclusive to one particular sector) and continued collaborations between regulators, academia and industry. A recommended immediate course of action was to establish an expert panel of users, developers and regulators to define the testing scope of models for different chemical classes. It was agreed by all participants that improvement and harmonization of alternative approaches is needed for all sectors and this will most effectively be achieved by stakeholders from different sectors sharing data

    Present state and future perspectives of using pluripotent stem cells in toxicology research

    Get PDF
    The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore