89 research outputs found

    Applications of Site-Specific Labeling to Study HAMLET, a Tumoricidal Complex of α-Lactalbumin and Oleic Acid

    Get PDF
    umor cells), and its tumoricidal activity has been well established.-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules.We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity

    Deletion of two exons from the Lymnaea stagnalis ß164-N-acetylglucosaminyltransferase gene elevated the kinietic efficiency of the encoded enzyme for both UDP-sugar donor and acceptor substrates

    Get PDF
    Lymnaea stagnalis UDP-GlcNAc:GlcNAcβ-R β1→4-N- acetylglucosaminyltransferase (β4-GlcNAcT) is an enzyme with structural similarity to mammalian UDP-Gal: GlcNAcβ-R β1→4-galactosyltransferase (β4-GAlT). Here, we report that also the exon organization of the genes encoding these enzymes is very similar. The β4-GlcNAcT gene (12.5 kilobase pairs, spanning 10 exons) contains four exons, encompassing sequences that are absent in the β4-GalT gene. Two of these exons (exons 7 and 8) show a high sequence similarity to part of the preceding exon (exon 6), suggesting that they have originated by exon duplication. The exon in the β4-GalT gene, corresponding to β4-GlcNAcT exon 6, encodes a region that has been proposed to be involved in the binding of UDP-Gal. The question therefore arose, whether the repeating sequences encoded by exon 7 and 8 of the β4-GlcNAcT gene would determine the specificity of the enzyme for UDP-GlcNAc, or for the less preferred UDP-GalNAc. It was found that deletion of only the sequence encoded by exon 8 resulted in a completely inactive enzyme. By contrast, deletion of the amino acid residues encoded by exons 7 and 8 resulted in an enzyme with an elevated kinetic efficiency for both UDP-sugar donors, as well as for its acceptor substrates. These results suggest that at least part of the donor and acceptor binding domains of the β4-GlcNAcT are structurally linked and that the region encompassing the insertion contributes to acceptor recognition as well as to UDP-sugar binding and specificity

    Molecular platforms for targeted drug delivery

    Get PDF
    The targeted delivery of bioactive molecules to the appropriate site of action, one of the critical focuses of pharmaceutical research, improves therapeutic outcomes and increases safety at the same time; a concept envisaged by Ehrlich over 100 years ago when he described the "magic bullet" model. In the following decades, a considerable amount of research effort combined with enormous investment has carried selective drug targeting into clinical practice via the advent of monoclonal antibodies (mAbs) and antibody-drug conjugates derivatives. Additionally, a deeper understanding of physiopathological conditions of disease has permitted the tailored design of targeted drug delivery platforms that carry drugs, many copies of the same drug, and different drugs in combination to the appropriate site of action least selectively or preferentially. The acquired know-how has provided the field with the design rationale to develop a successful delivery system that will provide new and improved means to treat many intractable diseases and disorders. In this review, we discuss a wide range of molecular platforms for drug delivery, and focus on those with more success in the clinic, given their potential for targeted therapies
    • …
    corecore