68 research outputs found

    Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation

    Get PDF
    Spontaneously beating engineered heart tissue (EHT) represents an advanced in vitro model for drug testing and disease modeling, but cardiomyocytes in EHTs are less mature and generate lower forces than in the adult heart. We devised a novel pacing system integrated in a setup for videooptical recording of EHT contractile function over time and investigated whether sustained electrical field stimulation improved EHT properties. EHTs were generated from neonatal rat heart cells (rEHT, n=96) or human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hEHT, n=19). Pacing with biphasic pulses was initiated on day 4 of culture. REHT continuously paced for 16-18 days at 0.5Hz developed 2.2× higher forces than nonstimulated rEHT. This was reflected by higher cardiomyocyte density in the center of EHTs, increased connexin-43 abundance as investigated by two-photon microscopy and remarkably improved sarcomere ultrastructure including regular M-bands. Further signs of tissue maturation include a rightward shift (to more physiological values) of the Ca(2+)-response curve, increased force response to isoprenaline and decreased spontaneous beating activity. Human EHTs stimulated at 2Hz in the first week and 1.5Hz thereafter developed 1.5× higher forces than nonstimulated hEHT on day 14, an ameliorated muscular network of longitudinally oriented cardiomyocytes and a higher cytoplasm-to-nucleus ratio. Taken together, continuous pacing improved structural and functional properties of rEHTs and hEHTs to an unprecedented level. Electrical stimulation appears to be an important step toward the generation of fully mature EHT

    Diagnostic Accuracy of a High-Sensitivity Cardiac Troponin Assay with a Single Serum Test in the Emergency Department.

    Get PDF
    OBJECTIVES: We sought to evaluate diagnostic accuracy of a high-sensitivity cardiac troponin I (hs-cTnI) assay for acute coronary syndromes (ACS) in the emergency department (ED). The assay has high precision at low concentrations and can detect cTnI in 96.8% of healthy individuals. METHODS: In successive prospective multicenter studies ("testing" and "validation"), we included ED patients with suspected ACS. We drew blood for hs-cTnI [Singulex Clarity® cTnI; 99th percentile, 8.67 ng/L; limit of detection (LoD), 0.08 ng/L] on arrival. Patients also underwent hs-cTnT (Roche Elecsys) testing over ≥3 h. The primary outcome was an adjudicated diagnosis of ACS, defined as acute myocardial infarction (AMI; prevalent or incident), death, or revascularization within 30 days. RESULTS: The testing and validation studies included 665 and 2470 patients, respectively, of which 94 (14.1%) and 565 (22.9%) had ACS. At a 1.5-ng/L cutoff, hs-cTnI had good sensitivity for AMI in both studies (98.7% and 98.1%, respectively) and would have "ruled out" 40.1% and 48.9% patients. However, sensitivity was lower for ACS (95.7% and 90.6%, respectively). At a 0.8-ng/L cutoff, sensitivity for ACS was higher (97.5% and 97.9%, ruling out 28.6% patients in each cohort). The hs-cTnT assay had similar performance at the LoD (24.6% ruled out; 97.2% sensitivity for ACS). CONCLUSIONS: The hs-cTnI assay could immediately rule out AMI in 40% of patients and ACS in >25%, with similar accuracy to hs-cTnT at the LoD. Because of its high precision at low concentrations, this hs-cTnI assay has favorable characteristics for this clinical application

    Diagnostic and Prognostic Utility of Circulating Cytochrome c in Acute Myocardial Infarction

    Get PDF
    Rationale: In contrast to cardiomyocyte necrosis, which can be quantified by cardiac troponin, functional cardiomyocyte impairment, including mitochondrial dysfunction, has escaped clinical recognition in acute myocardial infarction (AMI) patients. Objective: To investigate the diagnostic accuracy for AMI and prognostic prediction of in-hospital mortality of cytochrome c. Methods and Results: We prospectively assessed cytochrome c serum levels at hospital presentation in 2 cohorts: a diagnostic cohort of patients presenting with suspected AMI and a prognostic cohort of definite AMI patients. Diagnostic accuracy for AMI was the primary diagnostic end point, and prognostic prediction of in-hospital mortality was the primary prognostic end point. Serum cytochrome c had no diagnostic utility for AMI (area under the receiver-operating characteristics curve 0.51; 95% confidence intervals 0.44-0.58; P=0.76). Among 753 AMI patients in the prognostic cohort, cytochrome c was detectable in 280 (37%) patients. These patients had higher in-hospital mortality than patients with nondetectable cytochrome c (6% versus 1%; P<0.001). This result was mainly driven by the high mortality rate observed in ST-segment-elevation AMI patients with detectable cytochrome c, as compared with those with nondetectable cytochrome c (11% versus 1%; P<0.001). At multivariable analysis, cytochrome c remained a significant independent predictor of in-hospital mortality (odds ratio 3.0; 95% confidence interval 1.9-5.7; P<0.001), even after adjustment for major clinical confounders (odds ratio 4.01; 95% confidence interval 1.20-13.38; P=0.02). Conclusions: Cytochrome c serum concentrations do not have diagnostic but substantial prognostic utility in AMI

    Land‐use intensity and biodiversity effects on infiltration capacity and hydraulic conductivity of grassland soils in southern Germany

    Get PDF
    Evidence from experimental and established grasslands indicates that plant biodiversity can modify the water cycle. One suspected mechanism behind this is a higher infiltration capacity (νB_{B}) and hydraulic conductivity (K) of the soil on species-rich grasslands. However, in established and agriculturally managed grasslands, biodiversity effects cannot be studied independent of land-use effects. Therefore, we investigated in established grassland systems how land-use intensity and associated biodiversity of plants and soil animals affect νB and K at and close to saturation. On 50 grassland plots along a land-use intensity gradient in the Biodiversity Exploratory Schwäbische Alb, Germany, we measured νB with a hood infiltrometer at several matrix potentials and calculated the saturated and unsaturated K. We statistically analysed the relationship between νB_{B} or K and land-use information (e.g., fertilising intensity), abiotic (e.g., soil texture) and biotic data (e.g., plant species richness, earthworm abundance). Land-use intensity decreased and plant species richness increased νB_{B} and K, while the direction of the effects of soil animals was inconsistent. The effect of land-use intensity on νB_{B} and K was mainly attributable to its negative effect on plant species richness. Our results demonstrate that plant species richness was a better predictor of νB_{B} and K at and close to saturation than land-use intensity or soil physical properties in the established grassland systems of the Schwäbische Alb

    Circadian rhythm of cardiac troponin I and its clinical impact on the diagnostic accuracy for acute myocardial infarction

    Get PDF
    High-sensitivity cardiac troponin T (hs-cTnT) blood concentrations were shown to exhibit a diurnal rhythm, characterized by gradually decreasing concentrations throughout daytime, rising concentrations during nighttime and peak concentrations in the morning. We aimed to investigate whether this also applies to (h)s-cTnI assays and whether it would affect diagnostic accuracy for acute myocardial infarction (AMI).; Blood concentrations of cTnI were measured at presentation and after 1 h using four different cTnI assays: three commonly used sensitive (s-cTnI Architect, Ultra and Accu) and one experimental high-sensitivity assay (hs-cTnI Accu) in a prospective multicenter diagnostic study of patients presenting to the emergency department with suspected AMI. These concentrations and their diagnostic accuracy for AMI (quantified by the area under the curve (AUC)) were compared between morning (11 p.m. to 2 p.m.) and evening (2 p.m. to 11 p.m.) presenters.; Among 2601 patients, AMI was the final diagnosis in 17.6% of patients. Concentrations of (h)s-cTnI as measured using all four assays were comparable in patients presenting in the morning versus patients presenting in the evening. Diagnostic accuracy for AMI of all four (h)s-cTnI assays were high and comparable between patients presenting in the morning versus presenting in the evening (AUC at presentation: 0.90 vs 0.93 for s-cTnI Architect; 0.91 vs 0.94 for s-cTnI Ultra; 0.89 vs 0.94 for s-cTnI Accu; 0.91 vs 0.94 for hs-cTnI Accu).; Cardiac TnI does not seem to express a diurnal rhythm. Diagnostic accuracy for AMI is very high and does not differ with time of presentation.; NCT00470587, http://clinicaltrials.gov/show/NCT00470587
    corecore