274 research outputs found
Infinitely many local higher symmetries without recursion operator or master symmetry: integrability of the Foursov--Burgers system revisited
We consider the Burgers-type system studied by Foursov, w_t &=& w_{xx} + 8 w
w_x + (2-4\alpha)z z_x, z_t &=& (1-2\alpha)z_{xx} - 4\alpha z w_x +
(4-8\alpha)w z_x - (4+8\alpha)w^2 z + (-2+4\alpha)z^3, (*) for which no
recursion operator or master symmetry was known so far, and prove that the
system (*) admits infinitely many local generalized symmetries that are
constructed using a nonlocal {\em two-term} recursion relation rather than from
a recursion operator.Comment: 10 pages, LaTeX; minor changes in terminology; some references and
definitions adde
HIV Types, Groups, Subtypes and Recombinant Forms: Errors in Replication, Selection Pressure and Quasispecies
HIV-1 is a chimpanzee virus which was transmitted to humans by several zoonotic events resulting in infection with HIV-1 groups M P, and in parallel transmission events from sooty mangabey monkey viruses leading to infections with HIV-2 groups A H. Both viruses have circulated in the human population for about 80 years. In the infected patient, HIV mutates, and by elimination of some of the viruses by the action of the immune system individual quasispecies are formed. Along with the selection of the fittest viruses, mutation and recombination after superinfection with HIV from different groups or subtypes have resulted in the diversity of their patterns of geographic distribution. Despite the high variability observed, some essential parts of the HIV genome are highly conserved. Viral diversity is further facilitated in some parts of the HIV genome by drug selection pressure and may also be enhanced by different genetic factors, including HLA in patients from different regions of the world. Viral and human genetic factors influence pathogenesis. Viral genetic factors are proteins such as Tat, Vif and Rev. Human genetic factors associated with a better clinical outcome are proteins such as APOBEC, langerin, tetherin and chemokine receptor 5 (CCR5) and HLA B27, B57, DRB1{*}1303, KIR and PARD3B. Copyright (C) 2012 S. Karger AG, Base
An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly
Erythropoetin-producing hepatoma (Eph) receptors are cell-surface protein tyrosine kinases mediating cell-cell communication. Upon activation, they form signaling clusters. We report crystal structures of the full ectodomain of human EphA2 (eEphA2) both alone and in complex with the receptor-binding domain of the ligand ephrinA5 (ephrinA5 RBD). Unliganded eEphA2 forms linear arrays of staggered parallel receptors involving two patches of residues conserved across A-class Ephs. eEphA2-ephrinA5 RBD forms a more elaborate assembly, whose interfaces include the same conserved regions on eEphA2, but rearranged to accommodate ephrinA5 RBD. Cell-surface expression of mutant EphA2s showed that these interfaces are critical for localization at cell-cell contacts and activation-dependent degradation. Our results suggest a 'nucleation' mechanism whereby a limited number of ligand-receptor interactions 'seed' an arrangement of receptors which can propagate into extended signaling arrays
Fitness Ranking of Individual Mutants Drives Patterns of Epistatic Interactions in HIV-1
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Recommended from our members
Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sNN= 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μB> 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Recommended from our members
Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5
The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-methyltransferases to modify autonomously their mRNAs. However, a defined biological role of mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, provide a molecular signature for the discrimination of self and non-self mRNA
Binary classfication: credit risk prediction
This thesis demonstrates how to perform cost-sensitive binary classification in Azure ML Studio to predict credit risk based on the information given on a credit application. The classification problem in this experiment is a cost-sensitive one because the cost of misclassifying the positive samples is five times the cost of misclassifying the negative samples
AGING OF THE SKIN (TO HELP PRACTICING PHYSICIANS: PART 1)
The research focuses on skin aging. The objective of work is to provide information about common mechanisms of impact on aging process to practicing dermatocosmetologists. There are also provided materials of main structural and functional changes at aging on cellular, tissular, organ and body-wide levels, and also processes of their genetic control. Attention is directed to importance of taking into account these aspects in present-day production of cosmetic care products.Key words: aging, life expectancy, structural and functional changes of different levels of life activity.1К. В. Коляденко, кандидат медицинских наук, доцент; 2М. Н. Лебедюк, доктор медицинских наук, профессор; 3В. А. Бочаров, доктор медицинских наук, профессор. Старение кожи (в помощь практическому врачу: часть 1) / 1Национальный медицинский университет имени А. А. Богомольца, Украина, Киев; 2Одесский национальный медицинский университет, Украина, Одесса; 3Medical Center «ORTO-DENT/BIO-DERM», Украина, ОдессаПредмет исследования – старение кожи. Цель работы – предоставление информации практикующим дерматокосметологам об общих механизмах влияния на процесс старения. Приводятся материалы основных структурных и функциональных изменений при старении на клеточном, тканевом, органном и общеорганизменном уровнях, а так же процессы их генетического контроля. Обращается внимание на значении учета этих аспектов в современном производстве средств косметологического ухода.Ключевые слова: старение, продолжительность жизни, структурные и функциональные изменения разных уровней жизнедеятельности
Prospects of research of emotional burnout in relatives of patients with alcohol or opioid dependence
The questions of methodology of studying of relatives of patients with chronic diseases are considered. Challenges of implementation of burnuot construct into the area of research of addict’s relatives are described. This challenges are connected with inertness of the installations accenting only destructive components of relative - addict interaction and lack of measures for assessment of constructive components of personal activity of addict’s relatives. Social, economic and cultural conditions of various models of understanding of psychology of addictive patient’s relatives are analyzed
- …
