911 research outputs found

    On the Behaviour of General-Purpose Applications on Cloud Storages

    Get PDF
    Managing data over cloud infrastructures raises novel challenges with respect to existing and well studied approaches such as ACID and long running transactions. One of the main requirements is to provide availability and partition tolerance in a scenario with replicas and distributed control. This comes at the price of a weaker consistency, usually called eventual consistency. These weak memory models have proved to be suitable in a number of scenarios, such as the analysis of large data with Map-Reduce. However, due to the widespread availability of cloud infrastructures, weak storages are used not only by specialised applications but also by general purpose applications. We provide a formal approach, based on process calculi, to reason about the behaviour of programs that rely on cloud stores. For instance, one can check that the composition of a process with a cloud store ensures `strong' properties through a wise usage of asynchronous message-passing

    The Reversible Temporal Process Language

    Get PDF
    Reversible debuggers help programmers to quickly find the causes of misbehaviours in concurrent programs. These debuggers can be founded on the well-studied theory of causal-consistent reversibility, which allows one to undo any action provided that its consequences are undone beforehand. Till now, causal-consistent reversibility never considered time, a key aspect in real world applications. Here, we study the interplay between reversibility and time in concurrent systems via a process algebra. The Temporal Process Language (TPL) by Hennessy and Regan is a well-understood extension of CCS with discrete-time and a timeout operator. We define revTPL, a reversible extension of TPL, and we show that it satisfies the properties expected from a causal-consistent reversible calculus. We show that, alternatively, revTPL can be interpreted as an extension of reversible CCS with time

    Timed Multiparty Session Types

    Get PDF
    We propose a typing theory, based on multiparty session types, for modular verification of real-time choreographic interactions. To model real-time implementations, we introduce a simple calculus with delays and a decidable static proof system. The proof system ensures type safety and time-error freedom, namely processes respect the prescribed timing and causalities between interactions. A decidable condition on timed global types guarantees time-progress for validated processes with delays, and gives a sound and complete characterisation of a new class of CTAs with general topologies that enjoys progress and liveness

    Azolla-Anabaena as a Biofertilizer for rice paddy fields in the Po Valley, a temperate rice area in Northern Italy

    Get PDF
    Azolla is a floating pteridophyte, which contains as endosymbiont the nitrogen-fixing cyanobacterium Anabaena azollae (Nostocaceae family). Widely cultivated in the Asian regions, Azolla is either incorporated into the soil before rice transplanting or grown as a dual crop along with rice. To examine the feasibility of its use in flooded rice fields sited in the Temperate European Areas, we carried out a series of experiments in PVC tanks during 2000–2002 in Po Valley (northern Italy) conditions, to study the growth-development dynamics and the resistance/tolerance to low temperatures and to commonly used herbicides of several different Azolla strains. Three out of five strains tested survived the winter, with an increase in biomass from March to May producing approximately 30–40 kg ha−1 of nitrogen. One of these strains, named “Milan”, emerged as the most resistant to herbicide and the most productive. Of the herbicides tested, Propanil permitted the survival of growing Azolla

    Real-time optical manipulation of cardiac conduction in intact hearts

    Get PDF
    Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all‐optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide‐field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free‐run mode with submillisecond temporal resolution or in a closed‐loop fashion: a tailored hardware and software platform allowed real‐time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real‐time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real‐time resynchronization therapy and cardiac defibrillation. Furthermore, the closed‐loop approach was applied to simulate a re‐entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart

    Numerical study of jets produced by conical wire arrays on the Magpie pulsed power generator

    Full text link
    The aim of this work is to model the jets produced by conical wire arrays on the MAGPIE generator, and to design and test new setups to strengthen the link between laboratory and astrophysical jets. We performed the modelling with direct three-dimensional magneto-hydro-dynamic numerical simulations using the code GORGON. We applied our code to the typical MAGPIE setup and we successfully reproduced the experiments. We found that a minimum resolution of approximately 100 is required to retrieve the unstable character of the jet. We investigated the effect of changing the number of wires and found that arrays with less wires produce more unstable jets, and that this effect has magnetic origin. Finally, we studied the behaviour of the conical array together with a conical shield on top of it to reduce the presence of unwanted low density plasma flows. The resulting jet is shorter and less dense.Comment: Accepted for publication in Astrophysics & Space Science. HEDLA 2010 conference procedings. Final pubblication will be available on Springe

    A structured approach to VO reconfigurations through Policies

    Full text link
    One of the strength of Virtual Organisations is their ability to dynamically and rapidly adapt in response to changing environmental conditions. Dynamic adaptability has been studied in other system areas as well and system management through policies has crystallized itself as a very prominent solution in system and network administration. However, these areas are often concerned with very low-level technical aspects. Previous work on the APPEL policy language has been aimed at dynamically adapting system behaviour to satisfy end-user demands and - as part of STPOWLA - APPEL was used to adapt workflow instances at runtime. In this paper we explore how the ideas of APPEL and STPOWLA can be extended from workflows to the wider scope of Virtual Organisations. We will use a Travel Booking VO as example.Comment: In Proceedings FAVO 2011, arXiv:1204.579
    • 

    corecore