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Abstract. We propose a typing theory, based on multiparty session types, for modular
verification of real-time choreographic interactions. To model real-time implementa-
tions, we introduce a simple calculus with delays and a decidable static proof system.
The proof system with time constraints ensures type safety and time-error freedom,
namely processes respect the prescribed timing and causalities between interactions. A
decidable condition, enforceable on timed global types, guarantees global time-progress
for validated processes with delays, and gives a sound and complete characterisation of
a new class of CTAs with general topologies that enjoys global progress and liveness.

1 Introduction
Communicating timed automata (CTAs) [14] extend the theory of timed automata [3]
to enable a precise specification and verification of real-time distributed protocols. A
CTA consists of a finite number of timed automata synchronising over the elapsing
of time and exchanging messages over unbound channels. In spite of its simplicity,
the combination of timed automata [3] and communicating automata (CAs) [8] can
represent many different temporal aspects from a local viewpoint. On the other hand, the
model is known to be computationally hard, and it is difficult to directly link its idealised
semantics to implementations of programming languages and distributed systems.

On a parallel line of research, multiparty session types (MPSTs) [13, 6] have been
proposed to describe communication protocols among two or more participants from a
global viewpoint. Global types are projected to local types, against which programs can
be type-checked and verified to behave correctly without deadlocks. This framework is
applied in industry projects [20] and to the governance of large cyberinfrastructures [18]
via the Scribble (a MPST-based tool chain) project [21].

From the theoretical side, in the untimed setting recent work brings CAs into chore-
ographic frameworks, by seeking a correspondence with projected local types [11]. We
proceed along these lines by applying the idealised mathematical semantics of CTAs to
the design of MPSTs with clocks, clock constraints, and resets, in order to fill the gap
between the abstract specification by CTAs and the verification of real-time programs.
Surprisingly, since MPSTs inherently capture relative temporal constraints by imposing
an order on the communications, they enable effective verification without limitations
on topology or buffer-boundedness, unlike existing work on CTAs.

We organise our results in two parts. First we show that although time annotations
increase the expressive power of global types, time-error freedom is guaranteed without
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additional time analysis of the types. In § 3 we give the semantics of timed global types
(TGs) and prove soundness and completeness of the projection onto timed local types
(TLs) (Theorem 3.3). In § 4 we give a simple π-calculus for programs (running as pro-
cesses) with delays that can be used to synchronise the communications in a session. A
compositional proof system for the π-calculus enables a modular verification for time-
error freedom (Theorem 4.4): if all programs in a system are validated, then the global
conversation will respect the prescribed timing and causalities between interactions.

In the second part we investigate the conditions for an advanced property – time-
progress – ensuring that if a process deadlocks, then its untimed counter-part would
also deadlock (i.e., deadlock is not caused by time constraints). The fact that untimed
processes in single sessions are deadlock-free [13] yields progress for timed processes.
Time-progress is related to two delicate issues: (1) some time constraints in a TG may
be unsatisfiable and (2) there may exist some distributed implementation of the TG
which deadlocks. We give two sufficient conditions on TGs (§5) to prevent (1) and
(2) from happening: feasibility (for each partial execution allowed by a TG there is a
correct complete one) and wait-freedom (if all senders respect their time constraints,
then no receiver has to wait for a message). Feasibility and wait-freedom are decidable
(Proposition 5.1), and if we start from feasible and wait-free TGs, then the proof system
given in part one guarantees time-progress for processes (Theorem 5.4). Transparency
of properties is guaranteed not only between TGs and processes, but also between TGs
and CTAs: we give a sound and complete characterisation (Theorem 5.6) yielding a
new class of CTAs which enjoys progress and liveness (Theorem 5.7). Conclusions and
related work are in § 6. For the reviewers convenience we attach an appendix with full
proofs, detailed related work, and the definitions omitted in the paper.

2 Running example: a use-case of a distributed timed protocol

The motivating scenario developed with our partner, the Ocean Observatories Initiative
(OOI) [18], is directed towards deploying a network of sensors and ocean instruments
used/controlled remotely via service agents. In many OOI use-cases, requests are aug-
mented with deadlines, and services are scheduled to execute at certain time intervals.
These temporal requirements can be represented by combining global protocol descrip-
tions from MPSTs and time from CTAs. We show, using a Message Sequence Chart
(MSC)-like notation, a protocol to calculate the average water temperature via sensor
sampling. The protocol involves three participants: a master M that initiates the sam-
pling, a worker/sensor W with fixed response time w, and an aggregator A for accumu-
lating the data; their time constraints are expressed using clocks xM, xW, and xA, initially
set to 0. Delays l (average latency of the network) and w (sampling time) are expressed
in milliseconds. Each clock can be reset many times.
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(1): M sends W a message of type task and resets xM (xM := 0).
After at least l and at most 2l, W receives the message.

(2): W completes the task and replies to M with the temperature
(of type data) at any time satisfying xW ≤ w and resets xW. M
receives the message at time xM = 2l +w.

(3): M immediately sends A a message of type data along with
either label more (the sampling continues for another iteration)
or label stop (enough results have been aggregated).

(4): If more was selected in (3) then M sends W a new task with
label more, resets xM and another iteration is executed.

(5): If stop was selected, M notifies W and the session ends.

We build on the synchronous semantics in [14] i.e., time elapses at the same pace for all
the parts of the system. However, note that clocks can be reset at different times, hence
e.g. the values of xM, xW, and xA differ at some point.

3 Timed multiparty session types
Global types [6, 13] are specifications of the interactions (causalities and carried data
types) of multiparty sessions. A global type can be automatically projected onto a set
of local types describing the session from the perspective of each single participant
and used for local verification of processes. We extend global and local types with
constraints on clocks, yielding timed global types (TGs) and local session types (TLs).

We use the definitions from timed automata (see [3, § 3.3], [14, § 2]): let X be
a set of clocks ranging over x1, . . . ,xn and taking values in R≥0. A clock assignment
ν : X 7→ R≥0 returns the time of the clocks in X . We write ν+ t for the assignment
mapping all x ∈ X to ν(x)+ t. We write ν0 for the initial assignment mapping all clocks
to 0. The set Φ(X) of clock constraints over X is:

δ ::= true | x > c | x = c | ¬δ | δ1∧δ2

where c is a bound time constant taking values in Q≥0 (we derive false, <,≤,≥, ∨ in
the standard way). The set of free clocks in δ, written fn(δ), is defined inductively as:
fn(true) = /0, fn(x > c) = fn(x = c) = {x}, fn(¬δ) = fn(δ), and fn(δ1∧δ2) = fn(δ1)∪
fn(δ2). We write δ( #»x ) if fn(δ) = #»x and let ν |= δ denote that δ is satisfied by ν. A reset
predicate λ over X is a subset of X . When λ is /0 then no reset occurs, otherwise the
assignment for each x ∈ λ is set to 0. We write [λ 7→ 0]ν for the clock assignment that
is like ν except 0 is assigned to all clocks in λ.

Participants (p,q,p1, . . .∈N) interact via point-to-point asynchronous message pass-
ing. An interaction consists of a send action and a receive action, each annotated with
a clock constraint and a reset predicate. The clock constraint specifies when that action
can be executed and the reset predicate specifies which clocks must be reset.

Syntax. The syntax for sorts S, timed global types G, and timed local types T is:

S ::= bool | nat | . . . | G | (T,δ)
G ::= p→ q : {li〈Si〉{Ai}.Gi}i∈I | µt.G | t | end A ::= {δO,λO,δI,λI}
T ::= p⊕{li : 〈Si〉{Bi}.Ti}i∈I | p&{li : 〈Si〉{Bi}.Ti}i∈I | µt.T | t | end B ::= {δ,λ}
The sorts S include base types (bool, nat, etc.), G for shared name passing (used for
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the initiation of sessions of type G, cf. § 4), and (T,δ) for session delegation. Sort (T,δ)
allows a participant involved in a session to delegate the remaining behaviour T ; upon
delegation the sender will no longer participate in the delegated session and receiver
will execute the protocol described by T under any clock assignment satisfying δ. G
and T in sorts do not include free type variables.

In G, type p→ q : {li〈Si〉{Ai}.Gi}i∈I models an interaction: p chooses a branch i∈ I,
where I is a finite set of indices, and sends q the branching label li along with a message
of sort Si. The session then continues as prescribed by Gi. Each branch is annotated with
a time assertion Ai = {δO,λO,δI,λI}, where δO and λO are the clock constraint and reset
predicate for the output action, and δI and λI are for the input action. We will write
p→ q : 〈S〉{A}.G′ for interactions with one branch. Recursive type µt.G associates a
type variable t to a recursion body G; we assume that type variables are guarded in the
standard way and end occurs at least once in G (this is a common assumption e.g., [9]).
We denote by P (G) the set of participants of G and write G′ ∈G when G′ appears in G.

As in [14] we assume that the sets of clocks ‘owned’ (i.e., that can be read and reset)
by different participants in a TG are pair-wise disjoint, and that the clock constraint and
reset predicate of an action performed by a participant are defined only over the clocks
owned by that participant. The example below violates this assumption.

G1 = p→ q : 〈int〉{xp < 10,xp,xp < 20,xp}

since both the constraints of the (send) action of p and of the (receive) action of q are
defined over xp, and xp can be owned by either p or q (similarly for the reset predicates
{xp}). Formally, we require that for all G there exists a partition {X(p,G)}p∈P (G) of X
such that p→ q : {li〈Si〉{δOi,λOi,δIi,λIi}.Gi}i∈I ∈G implies fn(δOi),λOi ⊆ X(p,G) and
fn(δIi),λIi ⊆ X(q,G) for all i ∈ I.

In T , interactions are modelled from a participant’s viewpoint either as selection
types p⊕{li : 〈Si〉{Bi}.Ti}i∈I or branching types p&{li : 〈Si〉{Bi}.Ti}i∈I . We denote
the projection of G onto p ∈ P (G) by G ↓p; the definition is standard except each
{δO,λO,δI,λI} is projected onto the sender (resp. receiver) by keeping only the output
part {δO,λO} (resp. the input part {δI,λI}), e.g., if G = p→ q : {li〈Si〉{Bi,B′i}.Gi}i∈I
then G ↓p= q⊕{li : 〈Si〉{Bi}.Gi ↓p}i∈I and G ↓q= p&{li : 〈Si〉{B′i}.Gi ↓q}i∈I .

Example 3.1 (Temperature calculation) We show below the global timed type G for
the protocol in § 2 and its projection G ↓M onto M. We write for empty reset predicates.
G = M→ W : 〈task〉{B1

O,B
1
I}.µt.G′

G′ = W→ M : 〈data〉{B2
O,B

2
I}.

M→ A : {more〈data〉{B3
O,B

3
I}. M→ W : more〈task〉{B4

O,B
4
I}.t,

stop〈data〉{B3
O,B

3
I}. M→ W : stop〈〉{B4

O,B
4
I}.end}

G ↓M = W⊕〈task〉{B1
O}.

µt. W&〈data〉{B2
I}.

A⊕{more : 〈data〉{B3
O}.W⊕more : 〈task〉{B4

O}.t,
stop : 〈data〉{B3

O}.W⊕ stop : 〈〉{B4
O}.end}

B1
O = {xM = 0,xM}

B1
I = {l ≤ xW < 2l, }

B2
O = {xW ≤ w,xW}

B2
I = {xM = 2l +w, }

B3
O = {xM = 2l +w, }

B3
I = {3l +w≤ xA,xA}

B4
O = {xM = 2l +w,xM}

B4
I = {xW = 2l,xW}

Remark 3.1 (On the importance of resets). Resets in timed global types play an impor-
tant role to model the same notion of time as the one supported by CTAs, yielding a
more direct comparison between types and CTAs. Resets give a concise representation
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of several scenarios, e.g., when time constraints must be repeatedly satisfied for an un-
bounded number of times. This is clear from § 2 and Example 3.1: the repetition of
the same scenario across recursion instances (one for each sampling task) is modelled
by having all participants to reset their clocks in their last action before starting a new
recursion instance (e.g., B3

I, B4
O and B4

I on the second line of G′ in Example 3.1).

Semantics of timed global types. The LTS for TGs is defined over states of the form
(ν,G) and labels ` ::= pq!l〈S〉 | pq?l〈S〉 | t where pq!l〈S〉 is a send action (i.e., p sends
l〈S〉 to q), pq?l〈S〉 is the dual receive action, and t ∈R≥0 is a time action modelling time
passing. We denote the set of labels by L and let subj(pq!l〈S〉) = p, subj(qp?l〈S〉) = p

and subj(t) = /0.
We extend the syntax of G with p q : l〈S〉{A}.G to describe the state in which

message l〈S〉 has been sent by p but not yet received by q (as in [11, § 2]). The sep-
aration of send and receive actions is used to model the asynchronous behaviour in
distributed systems, as illustrated by the following example.

p→ q : 〈int〉{xp < 10, ,xq ≥ 10, }.p→ r : 〈int〉{xp ≥ 10, ,true, }
pq!〈int〉−−−−−→ p q : 〈int〉{xp < 10, ,xq > 20, }.p→ r : 〈int〉{xp < 10, ,true, }
pr!〈int〉−−−−−→ p q : 〈int〉{xp < 10, ,xq > 20, }.p r : 〈int〉{xp ≥ 10, ,true, }

After the first action pq!〈int〉 the TG above can reduce by one of the following actions:
a send pr!〈int〉 (as illustrated), a receive of q, or a time step. By using intermediate
states, a send action and its corresponding receive action (e.g., pq!〈int〉 and pq?〈int〉)
are separate, hence could be interleaved with other actions, as well as occur at dif-
ferent times. This fine-grained semantics corresponds to local type semantics where
asynchrony is modelled as message exchange through channels (see Theorem 3.3).

TGs are used as a model of the correct behaviour for distributed implementations in
§ 4. Therefore their semantics should only include desirable executions. We need to take
special care in the definition of the semantics of time actions: if an action is ready to be
executed and the associated constraint has an upper bound, then the semantics should
prevent time steps that are too big and would make that clock constraint unsatisfiable.
For instance in p→ q : 〈int〉{xp ≤ 20, ,true, } (assuming xp = 0) the LTS should
allow, before the send action of p occurs, only time steps that preserve xp ≤ 20.

More generally, we need to ensure that time actions do not invalidate the constraint
of any action that is ready to be executed, or ready action. A ready action is an action
that has no causal relationship with other actions that occur earlier, syntactically. A TG
may have more than one ready action, as shown by the following example.

p→ q : 〈int〉{xp ≤ 20, ,true, }.k→ r : 〈int〉{xk < 10, ,xr = 10, }

The TG above has two ready actions, namely the send actions of p and of k which can
happen in any order due to asynchrony (i.e., an order cannot be enforced without extra
communications between p and k). In this case a desirable semantics should prevent the
elapsing of time intervals that would invalidate either {xp ≤ 20} or {xk < 10}.

Below, function rdy(G,D) returns the set, for each ready actions in G, of elements
of the form {δi}i∈I which are the constraints of the branches of that ready action. D
is a set of participants, initially empty, used to keep track of the causal dependencies
between actions. We write rdy(G) for rdy(G, /0).
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j ∈ I A j = {δO,λO,δI,λI} ν |= δO ν′ = [λO 7→ 0]ν

(ν,p→ q : {li〈Si〉{Ai}.Gi}i∈I)
pq!l j〈S j〉−−−−−→ (ν′,p q : l j〈S j〉{A j}.G j)

bSELECTc

ν |= δI ν′ = [λI 7→ 0]ν

(ν,p q : l〈S〉{δO,λO,δI,λI}.G)
pq?l〈S〉−−−−→ (ν′,G)

(ν,G[µt.G/t]) `−→ (ν′,G′)

(ν,µt.G)
`−→ (ν′,G′)

bBRANCHc/bRECc

∀k ∈ I (ν,Gk)
`−→ (ν′,G′k) p,q 6∈ sub j(`) ` 6= t

(ν,p→ q : {li〈Si〉{Ai}.Gi}i∈I)
`−→ (ν′,p→ q : {li〈Si〉{Ai}.G′i}i∈I)

bASYNC1c

(ν,G)
`−→ (ν′,G′) q 6∈ sub j(`)

(ν,p q : l〈S〉{A}.G)
`−→ (ν′,p q : l〈S〉{A}.G′)

ν+ t |=∗ rdy(G)

(ν,G)
t−→ (ν+ t,G)

bASYNC2c/bTIMEc

Fig. 1. Labelled transitions for timed global types

(1)
rdy(p→ q : {li〈Si〉{Ai}.Gi}i∈I ,D)

(with Ai = {δOi,λOi,δIi,λIi})
=

{
{{δOi}i∈I}

⋃
i∈I rdy(Gi,D∪{p,q}) if p 6∈ D⋃

i∈I rdy(Gi,D∪{p,q}) otherwise

(2) rdy(p q : l〈S〉{δO,λO,δI,λI}.G,D) =

{
{{δI}}∪rdy(G,D∪{q}) if q 6∈ D
rdy(G,D∪{q}) otherwise

(3) rdy(µt.G,D) = rdy(G,D) (4) rdy(t,D) = rdy(end,D) = /0

In (1) the send action of p is ready, hence the singleton including the constraints {δOi}i∈I
are added to the solution and each Gi is recursively checked. Any action in Gi involving
p or q is not ready. Adding {p,q} to D ensures that the constraints of actions that
causally depend from the first interaction are not included in the solution. (2) is similar.

Definition 3.2 (Satisfiability of ready actions) We write ν |=∗ rdy(G) when the con-
straints of all ready actions of G are satisfiable under ν or sometimes in the future.
Formally, ν |=∗ rdy(G) iff ∀{{δi}i∈I} ∈ rdy(G)∃ t ≥ 0, j ∈ I. ν+ t |= δ j.

By requiring the satisfiability of some j∈ I (i.e., for some branches of a ready action) we
allow each action to be executed at any time allowed by its constraints, not necessarily
at the earliest possible time. In this way, the semantics of TGs specifies the full range of
correct behaviours.

The transition rules for TGs are given in Figure 1. We assume the execution always
begins with initial assignment ν0. Rule bSELECTc models selection as usual, except that
the clock constraint of the selected branch j is checked against the current assignment
(i.e., ν |= δO) which is updated with reset predicate λO. Rule bBRANCHc is the dual for
branching. Rules bASYNC1c and bASYNC2c model interactions that appear later (syntacti-
cally), but are not causally dependent on the first interaction. Rule bTIMEc models time
passing by incrementing all clocks; the clause in the premise prevents time steps that
would make the clock constraints of some ready action unsatisfiable. Note that bTIMEc
can always be applied to (ν,end) since ν+ t |=∗ rdy(end) for all t.

Semantics for timed local types. The LTS for TLs is defined with states (ν,T ), labels
L and by the following rules:
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(ν,q⊕{li : 〈Si〉{Bi}.Ti}i∈I)
pq!l j〈S j〉−−−−−→ (ν′,Tj) ( j ∈ I B j = {δ,λ} ν |= δ ν′ = [λ 7→ 0]ν) bLSELc

(ν,q&{li : 〈Si〉{Bi}.Ti}i∈I)
qp?l j〈S j〉−−−−−→ (ν′,Tj) ( j ∈ I B j = {δ,λ} ν |= δ ν′ = [λ 7→ 0]ν) bLBRAc

(ν,T [µt.T/t]) `−→ (ν′,T ′) imply (ν,µt.T ) `−→ (ν′,T ′) bLRECc
(ν,T ) t−→ (ν′,T ) (ν+ t |=∗ rdy(T )) bLTIMEc

Rule bLSELc is for send actions and its dual bLBRAc for receive actions. In rule bLTIMEc for
time passing, the constraints of the ready action of T must be satisfiable after t in ν. Note
that T always has only one ready action. The definitions of rdy(T ) and ν+t |=∗ rdy(T )
are the obvious extensions of the definitions we have given for TGs.

Given a set of participants {1, . . . ,n} we define configurations (T1, . . . ,Tn,
#»w) where

#»w ::= {wi j}i6= j∈{1,...,n} are unidirectional, possibly empty (denoted by ε), unbounded
channels with elements of the form l〈S〉. The LTS of (T1, . . . ,Tn,

#»w) is defined as fol-
lows, with ν being the overriding union (i.e., ⊕i∈{1,...,n}νi) of the clock assignments νi

of the participants. (ν,(T1, . . . ,Tn,
#»w))

`−→ (ν′,(T ′1 , . . . ,T
′

n ,
#»w ′)) iff:

(1) ` = pq!l〈S〉 ⇒ (νp,Tp)
`−→ (ν′p,T

′
p)∧w′pq = wpq · l〈S〉∧ (i j 6= pq⇒ wi j = w′i j ∧Ti = T ′i )

(2) ` = pq?l〈S〉 ⇒ (νq,Tq)
`−→ (ν′q,T

′
q)∧ l〈S〉 ·w′pq = wpq∧ (i j 6= pq⇒ wi j = w′i j ∧Tj = T ′j )

(3) ` = t⇒∀p 6= q. (νp,Tp)
`−→ (νp+ t,Tp) ∧ wpq = w′pq ∧

Tp = r&{lk : 〈Sk〉{δk,λk}.Tk}k∈I ∧wrp = lm〈S〉 ·wrp (m ∈ I) ⇒ ν+ t |=∗ {δm}
with p,q, i, j ∈ {1, . . . ,n}.

We write TR(G) for the set of visible traces obtained by reducing G under the initial
assignment ν0. Similarly for TR(T1, . . . ,Tn,

#»
ε ). We denote trace equivalence by ≈.

Theorem 3.3 (Soundness and completeness of projection) Let G be a timed global
type and {T1, . . . ,Tn}= {G ↓p}p∈P (G) be the set of its projections, then G≈ (T1, . . . ,Tn,

#»
ε ).

4 Multiparty session processes with delays
We model processes using a timed extension of the asynchronous session calculus [6].
The syntax of the session calculus with delays is presented below.

P ::= u[n](y).P Request
| u[i](y).P Accept
| c[p]/ l〈e〉;P Select
| c[p].{li(zi).Pi}i∈I Branching
| delay(t).P Delay
| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| µX .P Recursion
| X Variable

| (νa)P Hide Shared
| (νs)P Hide Session
| s : h Queue

h ::= /0 | h · (p,q,m) (queue content)
m ::= l〈v〉 | (s[p],ν) (messages)
c ::= s[p] | y (session names)
u ::= a | z (shared names)
e ::= v | ¬e | e′op e′ (expressions)
v ::= c | u | true | . . . (values)

u[n](y).P sends, along u, a request to start a new session y with participants 1, . . . ,n,
where it participates as 1 and continues as P. Its dual u[i](y).P engages in a new session
as participant i. Select c[p]/ l〈e〉;P sends message l〈e〉 to participant p in session c and
continues as P. Branching is dual. Request and accept bind y in P, and branching binds
zi in Pi. We introduce a new primitive delay(t).P that executes P after waiting exactly
t units of time. Note that t is a constant (as in [5, 17]). The other processes are standard.
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a[n](y).P1 |∏i∈{2,..,n} a[i](y).Pi −→ (νs)(∏i∈{1,..,n}Pi[s[i]/y] | s : /0) (s 6∈ fn(Pi)) bLINKc
s[p][q]/ l〈e〉;P | s : h −→ P | s : h · (p,q, l〈v〉) (e ↓ v) bSELc

s[p][q].{li(zi).Pi}i∈J | s : (p,q, l j〈v〉) ·h −→ Pj[v/z j] | s : h ( j ∈ J) bBRAc
delay(t).P |∏ j∈J s j : h j −→ P |∏ j∈J s j : h j bDELAYc

P−→ P′ (not by bDELAYc) imply P | Q−→ P′ | Q bCOMc
if e then P else Q−→ P (e ↓ true) if e then P else Q−→ Q (e ↓ false) bIFT/IFFc
P≡ P′ P′ −→ Q′ Q≡ Q′ imply P−→ Q P−→ P′ imply (νn)P−→ (νn)P′ bSTR/HIDEc

Fig. 2. Reduction for processes

We often omit inaction 0, and the label in a singleton selection or branching, and denote
with fn(P) the set of free variables and names of P.

We define programs as processes that have not yet engaged in any session, namely
that have no queues, no session name hiding, and no free session names/variables.

Structural equivalence for processes is the least equivalence relation satisfying the
standard rules from [6] – we recall below (first row) those for queues – plus the follow-
ing rules for delays:
(νs)s : /0 = 0 s : h · (p,q,m) · (p′,q′,m′) ·h′ ≡ s : h · (p′,q′,m′) · (p,q,m) ·h′ if p 6= p′ or q 6= q′

delay(t + t ′).P≡ delay(t).delay(t ′).P delay(0).P≡ P
delay(t).(νa)P≡ (νa)delay(t).P delay(t).(P | Q)≡ delay(t).P | delay(t).Q

In the first row: (νs)s : /0 = 0 removes queues of ended sessions, the second rule per-
mutes causally unrelated messages. In the second row: the first rule breaks delays into
smaller intervals, and delay(0).P≡ P allows time to pass for idle processes. The rules
in the third row distribute delays in hiding and parallel processes.

The reduction rules are given in Figure 2. In bSELc we write e ↓ v when expression
e evaluates to value v. Rule bDELAYc models time passing for P. By combining bDELAYc
with rule delay(t).(P | Q) ≡ delay(t).P | delay(t).Q we allow a delay to elapse si-
multaneously for parallel processes. The queues in parallel with P always allow time
passing, unlike other kinds of processes (as shown in rule bCOMc which models the syn-
chronous semantics of time in [14]). Rule bCOMc enables part of the system to reduce as
long as the reduction does not involve bDELAYc on P. If P reduces by bDELAYc then also
all other parallel processes must make the same time step, i.e. the whole system must
move by bDELAYc. The other rules are standard (n stands for s or a in bHIDEc).

Example 4.1 (Temperature calculation) Process PM is a possible implementation of
participant M of the protocol in Example 3.1, e.g., G ↓M. Assuming that at least one task
is needed in each session, we let task() be a local function returning the next task and
more tasks() return true when more tasks have to be submitted and false otherwise.

PM = s[M][W]/ 〈task()〉;µX .delay(2l +w). s[M][W]. (y);if more tasks()
then s[M][A]/more〈y〉;s[M][W]/more〈task()〉;X else s[M][A]/ stop〈y〉;s[M][W]/ stop〈〉;end

Proof rules. We validate programs against specifications based on TLs, using judge-
ments of the form Γ ` P.∆ and Γ ` e : S defined on the following environments:

Γ ::= /0 | Γ,u : S | Γ,X : ∆ ∆ ::= /0 | ∆,c : (ν,T )
The type environment Γ maps shared variables/names to sorts and process variables to
their types, and the session environment ∆ holds information on the ongoing sessions,
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bVREQc

Γ,u : G ` P.∆,y[1] : (ν0,G ↓1)
dom(ν0) = {x1}

Γ,u : G ` u[n](y).P.∆
bVACCc

Γ,u : G ` P.∆,y[i] : (ν0,G ↓i)
dom(ν0) = {xi} i 6= 1
Γ,u : G ` u[i](y).P.∆

bVBRAc
∀i ∈ I ν |= δi

{
Γ,zi : Si ` Pi .∆,c : ([λi 7→ 0]ν,Ti) (Si 6= (Td ,δd))

Γ ` Pi .∆,c : ([λi 7→ 0]ν,Ti),zi : (νd ,Td) νd |= δd (Si = (Td ,δd))

Γ ` c[p].{li(zi).Pi}i∈I .∆,c : (ν,p&{li : 〈Si〉{δi,λi}.Ti}i∈I)

bVSELc j ∈ I Γ ` e : S j ν |= δ j Γ ` P.∆,c : ([λ j 7→ 0]ν,Tj) (S j 6= (Td ,δd))

Γ ` c[p]/ l j〈e〉;P.∆,c : (ν,p⊕{li : 〈Si〉{δi,λi}.Ti}i∈I)

bVDELc j ∈ I Γ ` e : S j ν |= δ j νd |= δd Γ ` P.∆,c : ([λ j 7→ 0]ν,Tj) (S j = (Td ,δd))

Γ ` c[p]/ l j〈e〉;P.∆,c : (ν,p⊕{li : 〈Si〉{δi,λi}.Ti}i∈I),c′ : (νd ,Td)

bVPARc dom(∆1)∩dom(∆2) = /0 Γ ` Pi .∆i i ∈ {1,2}
Γ ` P1 | P2 .∆1,∆2

bVCONDc Γ ` e : bool Γ ` Pi .∆ i ∈ {1,2}
Γ ` if e then P1 else P2 .∆

bVTIMEc Γ ` P.{ci : (νi + t,Ti)}i∈I
Γ ` delay(t).P.{ci : (νi,Ti)}i∈I

bVENDc∀c ∈ dom(∆) ∆(c) = (ν,end)
Γ ` 0.∆

bVDEFcΓ,X : ∆ ` P.∆

Γ ` µX .P.∆
bVCALLc∀c ∈ dom(∆′) ∆

′(c) = (ν,end)
Γ,X : ∆ ` X .∆,∆′

Fig. 3. Proof rules for programs

e.g., ∆(s[p]) = (ν,T ) when the process being validated is acting as p in session s speci-
fied by T ; ν is a ‘virtual’ clock assignment built during the validation.

Resets can generate infinite time scenarios in recursive protocols. To ensure sound
typing we introduce a condition, infinite satisfiability, that guarantees a regularity across
different instances of a recursion.

Definition 4.2 (Infinitely satisfiable) G is infinitely satisfiable if either: (1) constraints
in recursion bodies have no resets, no equalities nor upper bounds (i.e., x < c or x≤ c),
or (2) all participants reset at each iteration.

In the rest of this section we assume that TGs are infinitely satisfiable. As usual (e.g., [13]),
in the validation of P we check Γ ` P′ .∆ where P′ is obtained by unfolding once all
recursions µX .P′′ occurring in P. This ensures that both the first instance of a recursion
and the successive ones (all similar by infinite satisfiability) satisfy the specification.

We show in Figure 3 selected proof rules for programs. Rule bVREQc for session
request adds a new instance of session for participant 1 to ∆ in the premise. The newly
instantiated session is associated with an initial assignment ν0 for the clock of partici-
pant 1. Rule bVACCc for session accept is similar but initiates a new session for partici-
pant i. Rule bVBRAc for branching processes checks all the branches in I. If the received
message is a session (i.e., Si = (Td ,δd)) a new assignment zi : (νd ,Td) is added to ∆ in
the premise. This can be any assignment such that νd |= δd . Rule bVSELc for selection
processes checks that the clock constraint δ j of the selected branch j satisfies the cur-
rent assignment ν, and updates, in the session environment of the premise, the clock
assignment as prescribed by λ j. Rule bVDELc for delegation requires δd to be satisfied
in the assignment νd of the delegated session, which is removed from the premise. Rule
bVTIMEc increments the clock assignments of all sessions in ∆. Rule bVENDc validates 0
if there are no more actions prescribed by ∆. Rule bVDEFc extends Γ with the assignment
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∀i ∈ {1, ..,n} s 6∈ fn(Pi)

a[n](y).P1 |∏i∈{2,..,n} a[i](y).Pi −→ (νs)(∏i∈{1,..,n}(Pi[s[i]/y] | (s[i],ν0)) | s : /0)
bLINKc

delay(t).P |∏ j∈J(s j : h j |∏k∈K j (s j[pk],νk))−→ P |∏ j∈J(s j : h j |∏k∈K j (s j[pk],νk + t)) bDELAYc
e ↓ v ν

′ = [λ 7→ 0]ν δ |= ν

s[p][q]/{δ,λ}l〈e〉;P | s : h | (s[p],ν)−→ P | s : h · (p,q, l〈v〉) | (s[p],ν′)
bSELc

¬δ |= ν

s[p][q]/{δ,λ}l〈e〉;P | s : h | (s[p],ν)−→ error | s : h | (s[p],ν)
bESELc

Fig. 4. Extended reduction for processes with errors and clocks (selected rules)

for process variable X . Rules bVPARc and bVCONDc are standard. Rule bVCALLc validates,
as usual, recursive call X against Γ(X) (and possibly some terminated sessions ∆′).

Theorem 4.3 (Type preservation) If Γ ` P. /0 and P−→ P′, then Γ ` P′ . /0.

In the above theorem, P is a process reduced from a program (hence ∆ is /0). A standard
corollary of type preservation is error freedom. An error state is reached when a process
performs an action at a time that violates the constraints prescribed by its type. To for-
mulate this property, we extend the syntax of processes as follows: selection and branch-
ing are annotated with clock constraints and reset predicates (i.e., c[p] / l〈e〉{δ,λ};P
and c[p].{li(zi){δi,λi}.Pi}i∈I); two new processes, error and clock process (s[p],ν),
are introduced. Process error denotes a state in which a violation has occurred, and
(s[p],ν) associates a clock assignment ν to ongoing session s[p]. The reduction rules for
processes are extended as shown in Figure 4: bLINKc introduces a clock process (s[i],ν0)
with initial assignment for each participant i in the new session; bDELAYc increments all
clock assignments, bSELc checks the clock constraints against clock assignments and
appropriately resets (the rule for branching is extended similarly); bESELc is an addi-
tional rule which moves to error when a process tries to perform a send action at a
time that does not satisfy the constraint (a similar rule is added for violating receive
actions). Note that bSELc only resets the clocks associated to participant p in session s
and never affects clocks of other participants and sessions. The proof rules are adapted
straightforwardly, with error not validated against any ∆.

Theorem 4.4 (Time-error freedom) If Γ ` P.∆, and P→∗ P′ then P′ 6≡ error.

5 Time-progress of timed processes and CTAs
This section studies a subclass of timed global types characterised by two properties,
feasibility and wait-freedom and states their decidability; it then shows that these are
sufficient conditions for progress of validated processes and CTAs.

Feasibility. A TG G is feasible iff (ν0,G0) −→∗ (ν,G) implies (ν,G) −→∗ (ν′,end)
for some ν′. Intuitively, G0 is feasible if every partial execution can be extended to
a terminated session. Not all TGs are feasible. The specified protocol may get stuck
because a constraint is unsatisfiable, for example it is false, or the restrictions posed
by previously occurred constraints are too strong. In Figure 5: in (1) if p sends 〈int〉 at
time 5, which satisfies xp > 3, then there exists no xq satisfying xq = 4 (considering that
xq must be greater than or equal to 5 to respect the global flowing of time); (2) amends
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1. p→ q : 〈int〉{xp > 3, ,xq = 4, }
2. p→ q : 〈int〉{xp > 3∧ xp ≤ 4, ,xq = 4, } 3. p→ q : 〈int〉{xp > 3, ,xq ≥ 4, }
4. q→ r : {l1 : {xq > 3, ,true, }, l2 : {xq < 3, ,true, }}
5. µt.p→ q : 〈int〉{xp < 1,xp,xq = 2,xq}.p→ r : 〈int〉{xp < 5, ,true,xr}.t
6. µt.p→ q : 〈int〉{xp < 1,xp,xq = 2,xq}.p→ r : 〈int〉{xp < 1, ,true,xr}.t

Fig. 5. Examples of non-feasible (1,5) and feasible (2,3,4,6) global types

(1) by restricting the earlier constraint; (3) amends (1) by relaxing the unsatisfiable
constraint. In branching and selection at least one constraint associated to the branches
must be satisfiable, e.g., we accept (4). In recursive TGs, a constraint may become
unsatisfiable by the restrictions posed by constraints that occur after, syntactically, in
the same recursion body. In the second iteration of (5) xq = 2 is made unsatisfiable
by the restriction xp < 5 form the first iteration (e.g., p may send q the message when
xq > 2); in (6) this problem is solved by restricting the second constraint on xp.

Wait-freedom. In distributed implementations, a party can send a message at any time
satisfying the constraint. Another party can choose to execute the corresponding receive
action at any specific time satisfying the constraint without knowing when the message
has been or will be sent. If the constraints in a TG allow a receive action before the
corresponding send, a complete correct execution of the protocol may not be possible
at run-time (as we will illustrate later with an example). We introduce a condition on
TGs called wait-freedom, ensuring that in all the distributed implementations of a TG,
a receiver checking the queue at any prescribed time never has to wait for a message.

Formally (and using ⊃ for logic implication): G0 is wait-free iff (ν0,G0) −→∗
pq!l〈S〉−−−−→

(ν,G) and p q : l〈S〉{δO,λO,δI,λI}.G′ ∈ G imply δI ⊃ ν(x)≤ x for all x ∈ fn(δI).
We show below a process P | Q whose correct execution cannot complete despite

P | Q is the well-typed implementation of a feasible (but not wait-free) TG.

G = p→ q : 〈int〉{xp < 3∨ xp > 3, ,xq < 3∨ xq > 3, }.
q→ p : {l1 : {xq > 3, ,xp > 3, }, l2 : {xq < 3, ,xp < 3, }}

G ↓p = q⊕〈int〉{xp < 3∨ xp > 3, }.q&{l1 : {xp > 3, }, l2 : {xp < 3, }}
G ↓q = p&〈int〉{xq < 3∨ xq > 3, }.p⊕{l1 : {xq > 3, }, l2 : {xq < 3, }}
P = delay(6).s[p][q]/ 〈10〉;s[q][p].{l1.0, l2.0} Q = s[p][q]. (x).s[q][p]/ l2〈〉;0

P implements G ↓p: it waits 6 units of time, then sends q a message and waits for the
reply. Q implements G ↓q: it receives a message from p and then selects label l2; both
interactions occur at time 0 which satisfies the clock constraints of G ↓q. By Theo-
rem 4.4, since /0 ` P |Q. s[p] : (ν0,G ↓p),s[q] : (ν0,G ↓q), no violating interactions will
occur in P | Q. However P | Q cannot make any step and the session it stuck. This sce-
nario, unlike errors in § 4 representing violations, models the fact that a non wait-free
specification allows participants to have incompatible views of the timings of action.

Decidability. If G is infinitely satisfiable (as also assumed by the typing in § 4), then
there exists a terminating algorithm for checking that it is feasible and wait-free. The
algorithm is based on a direct acyclic graph annotated with clock constraints and reset
predicates, and whose edges model the causal dependencies between actions in (the
one-time unfolding of) G. The algorithm yields Proposition 5.1.
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Proposition 5.1 (Decidability) Feasibility and wait-freedom of infinitely satisfiable TGs
are decidable.

Time-progress for processes. We study the conditions under which a validated pro-
gram P is guaranteed to proceed until the completion of all activities of the protocols
it implements, assuming progress of its untimed counterpart (i.e., erase(P)). The era-
sure erase(P) of a timed processes P is defined inductively by removing the delays in
P (i.e., erase(delay(t).P′) = erase(P′)), while leaving unchanged the untimed parts
(e.g., erase(u[n](y).P′) = u[n](y).erase(P′)); the other rules are homomorphic.

Proposition 5.2 (Conformance) If P−→ P′, then erase(P)−→∗ erase(P′).

Processes implementing multiple sessions may get stuck because of a bad timing of
their attempts to initiate new sessions. Consider P = delay(5).a[2](v).P1 | a[2](y).P2;
erase(P) can immediately start the session, whereas P is stuck. Namely, the delay of
5 time units introduces a deadlock in a process that would otherwise progress. This
scenario is ruled out by requiring processes to only initiate sessions before any delay
occurs, namely we assume processes to be session delay. All examples we have exam-
ined in practice (e.g., OOI use cases [18]) conform session delay.

Definition 5.3 (Session delay) P is session delay if for each process occurring in P of
the form delay(t).P′ (with t > 0), there are no session request and session accept in P′.

We show that feasibility and wait-freedom, by regulating the exchange of messages
within established sessions, are sufficient conditions for progress of session delay pro-
cesses. We say that P is a deadlock process if P−→∗ P′ where P′ 6−→ and P′ 6≡ 0, and
that Γ is feasible (resp. wait-free) if Γ(u) is feasible (resp. wait-free) for all u∈ dom(Γ).

Theorem 5.4 (Timed progress in interleaved sessions) Let Γ be a feasible and wait-
free mapping, Γ ` P0 . /0, and P0 −→+ P. If P0 is session delay, erase(P) is not a
deadlock process and if erase(P)−→ then P−→.

Several typing systems guarantee deadlock-freedom, e.g. [6]. We use one instance from
[13] where a single session ensures deadlock-freedom. We characterise processes im-
plementing single sessions, or simple, as follows: P is simple if P0 −→∗ P for some
program P0 such that a : G ` P0 . /0, and P0 = a[n](y).P1 | ∏i∈{2,..,n} a[i](y).Pi where
P1, . . . ,Pn do not contain any name hiding, request/accept, and session receive/delegate.

Corollary 5.5 (Time progress in single sessions) Let G be feasible and wait-free, and
P be a simple process with a : G ` P . /0. If erase(P) −→, then there exist P′ and P′′

such that erase(P)−→ P′, P−→+ P′′ and erase(P′′) = P′.

Progress for CTAs. Our TGs (§ 3) are a natural extension of global types with timed
notions from CTAs. This paragraph clarifies the relationships between TGs and CTAs.
We describe the exact subset of CTAs that corresponds to TGs. We also give the condi-
tions for progress and liveness that characterise a new class of CTAs.
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We first recall some definitions from [3, 14]. A timed automaton is a tuple A =
(Q,q0,Act,X ,E,F) such that Q are the states, q0 ∈ Q is the initial state, Act is the al-
phabet, X are the clocks, and E ⊆ (Q×Q×Act×2X×Φ(X)) are the transitions, where
2X are the reset predicates, Φ(X) the clock constraints, and F the final states. A network
of CTAs is a tuple C =(A1, . . . ,An,

#»w) where #»w = {wi j}i6= j∈{1,..,n} are unidirectional un-
bounded channels. The LTS for CTAs is defined on states s = ((q1,ν1), . . . ,(qn,νn),

#»w)
and labels L and is similar to the semantics of configurations except that each Ai can
make a time step even if it violates a constraint. For instance, assume that A1 can only
perform transition (q1,q′1, i j!l〈S〉, /0,xi ≤ 10) from a non-final state q1, and that ν1 = 10,
then the semantics in [14] would allow a time transition with label 10. However, after
such transition A1 would be stuck in a non-final state and the corresponding trace would
not be accepted by the semantics of [14].

In order to establish a natural correspondence between TGs and CTAs we introduce
an additional condition on the semantics of C , similar to the constraint on ready actions
in the LTS for TG (rule bTIMEc in § 3). We say that a time transition with label t is spec-
ified if ∀i ∈ {1, ..,n}, νi + t |=∗ rdy(qi) where rdy(qi) is the set {δ j} j∈J of constraints
of the outgoing actions from qi. We say that a semantics is specified if it only allows
specified time transitions. With a specified semantics, A1 from the example above could
not make any time transition before action i j!l〈S〉 occurs.

The correspondence between TGs and CTAs is given as a sound and complete en-
coding. The encoding from T into A , denoted by A(T ), follows exactly the definition
in [11, § 2], but adds clock constraints and reset predicates to the corresponding edges,
and sets the final states to {end}. The encoding of a set of TLs {Ti}i∈I into a network
of CTAs, written A({Ti}i∈I), is the tuple (A(T1), . . . ,A(Tn),

#»
ε ). Let G have projections

{Ti}i∈I , we write A(G) for as (A(T1), . . . ,A(Tn),
#»
ε ).

Before stating soundness and completeness, we recall and adapt (to the timed set-
ting), two conditions from [11]: the basic property (timed automata have the same shape
as TLs) and multiparty compatibility (timed automata perform the same actions as a set
of projected TG). A state s is stable when all its channels are empty. More precisely: C is
basic when all its timed automata are deterministic, and the outgoing actions from each
(qi,Ci) are all sending or all receiving actions, and all to/from the same co-party. C is
multiparty compatible when in all its reachable stable states, all possible (input/output)
action of each timed automaton can be matched with a corresponding complementary
(output/input) actions of the rest of the system after some 1-bounded executions (i.e.,
executions where the size of each buffer contains at most 1 message).1

A session CTA is a basic and multiparty compatible CTA with specified semantics.

Theorem 5.6 (Soundness and completeness) (1) Let G be a (projectable) TG then
A(G) is basic and multiparty compatible. Furthermore with a specified semantics G≈
A(G). (2) If C is a session CTA then there exists G such that C ≈ A(G).

1 Note that: (1) multiparty compatibility allows scenarios with unbounded channels e.g., the channel from
p to q in µt.p→ q : l〈S〉{A}.t, and (2) considering 1-bounded executions (for a simpler theory) preserves
generality due to a property called stability in [11] and directly applicable to our scenario. By stability, if
C is basic and multiparty compatible, then for all its reachable states s there exists an execution s−→∗ s′

from s to a stable state s′, and there exists a 1-bounded execution s0 −→∗ s′ from the initial state s0 of C to
s′. Namely, after an appropriate execution any reachable state can be reached by a 1-bounded execution.
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Our characterisation does not directly yields transparency of properties, differently
from the untimed setting [11] and similarly to timed processes (§ 4). In fact, a session
CTA itself does not satisfy progress. In the following we give the conditions that guar-
antee progress and liveness of CTAs. Let s = ((q1,ν1), . . . ,(qn,νn),

#»w) be a reachable
state of C : s is a deadlock state if (i) #»w = #»

ε , (ii) for all i ∈ {1, . . . ,n}, (qi,νi) does
not have outgoing send actions, and (iii) for some i ∈ {1, . . . ,n}, (qi,νi) has incoming
receiving action; s satisfies progress if for all s′ reachable from s: (1) s′ is not a deadlock
state, and (2) ∀t ∈ N, ((q1,ν1 + t), . . . ,(qn,νn + t), #»w) is reachable from s in C . We say
C satisfies liveness if for every reachable state s in C , s−→∗ s′ with s′ final.

Progress entails deadlock freedom (1) and, in addition, requires (2) that it is always
possible to let time to diverge; namely the only possible way forward cannot be by
actions occurring at increasingly short intervals of time (i.e., Zeno runs).2

We write TR(C ) for the set of visible traces that can be obtained by reducing C . We
extend to CTAs the trace equivalence ≈ defined in § 3.

Theorem 5.7 (Progress and liveness for CTAs) If C is a session CTA and there exists
a feasible G s.t. C ≈ A(G), then C satisfies progress and liveness.

6 Conclusion and related work

This work designs a choreographic timed specification based on the semantics of CTAs
and MPSTs, and attests its theory in the π-calculus. The table below recalls the results
for the untimed setting we build upon (first row), and summarises the results in this
work: a decidable proof system for π-calculus processes ensuring time-error freedom
and a sound and complete characterisation of CTAs (second row), and two conditions,
with decidable algorithms, ensuring progress of processes (third row). These conditions
also characterise a new class of CTAs, without restrictions on the topologies, that satisfy
progress and liveness. We have verified the practicability of our approach in an imple-
mentation of a timed conversation API for Python. The prototype [1] is currently being
integrated into the OOI infrastructure [18].

TGs π-calculus session CTAs
untimed type safety, error-freedom, Sound, complete characterisation,

progress [13] progress [11]
timed type safety (Thm 4.3) Sound, complete characterisation,

error-freedom (Thm 4.4) (Thm 5.6)
feasible, wait-free progress (Thm 5.4, Thm 5.5) progress (Thm 5.7)

Literature on MPSTs. The extension of the semantics of types with time is delicate as
it may introduce unwanted executions (as discussed in § 3). To capture only the correct
executions (corresponding to accepted traces in timed automata) we have introduced a
new condition on time reductions of TGs and TLs: satisfiability of ready actions (e.g.,
bTIMEc in Figure 1). Our main challenge was extending the progress properties of un-
timed types [6] and CAs [11] to timed interactions. We introduced two additional neces-
sary conditions for the timed setting, feasibility and wait-freedom, whose decidability

2 The time divergence condition is common in timed setting and is called time-progress in [3].
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is non trivial, and their application to time-progress is new. The theory of assertion-
enhanced MPSTs [7] (which do not include progress) could not be applied to the timed
scenario due to resets and the need to ensure consistency w.r.t. absolute time flowing.
Reachability and verification. In our work, if a CTA derives from a feasible TG then
error and deadlock states will not be reached. Decidability of reachability for CTAs has
been proven for specific topologies: those of the form (A1,A2,w1,2) [14] and poly-
forests [10]. A related approach [2] extends MSCs with timed events and provides veri-
fication method that is decidable when the topology is a single strongly connected com-
ponent, which ensures that channels have an upper bound. Our results do not depend on
the topology nor require a limitation of the buffer size (e.g., the example in § ?? is not
a polyforest and the buffer of A is unlimited). On the other hand, our approach relies on
the additional restrictions induced by the conversation structure of TGs.
Feasibility. Feasibility was introduced in a different context (i.e., defining a not too
stringent notion of fairness) in [4]. This paper gives a concrete definition in the context
of real-time interactions, and states its decidability for infinitely satisfiable TGs. [22]
gives an algorithm to check deadlock freedom for timed automata. The algorithm, based
on syntactic conditions on the states relying on invariant annotations, is not directly
applicable to check feasibility e.g., on the timed automaton derived from a TG.
Calculi with time. Recent work proposes calculi with time, for example: [19] includes
time constraints inspired by timed automata into the π-calculus, [5, 17] add timeouts,
[12] analyses the active times of processes, and [15] for service-oriented systems. The
aim of our work is different from the work above: we use timed specifications as types
to check time properties of the interactions, rather than enriching the π-calculus syntax
with time primitives and reason on examples using timed LTS (or check channels lin-
earity as [5]). Our aim is to define a static checker for time-error freedom and progress
on the basis of a semantics guided by timed automata. With this respect, our calculus is
a small syntactic extension from the π-calculus and is simpler than the above calculi.
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Appendix
This appendix includes additional definitions and proofs, as well as detailed related work,

and can be read at the committee’s discretion.
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A Extended related work (calculi with time)

The different notions of time in existing process calculi could be classified along three
main characteristics [?]: (1) absolute (time flows at the same pace in all the parts or
the system) or relative, (2) continuous (time takes values in R≥0) or discrete, and (3)
separate (two-phase scheme: time actions and other actions are performed in different
phases) or combined (time-stamp scheme). As to (1) and (2), absolute and continuous
time, is the combination chosen in our work. We adopted the two-phase scheme as
customary in process algebra (whereas timed automata use timestamps).

[19] extends the π-calculus with absolute and continuous times, and includes timed
constraints inspired by timed automata in the syntax level of the π-calculus. Timed
COWS [15] extends COWS with absolute, continuous and separate time. COWS is
enriched with a ‘wait’ construct similar to our delay. Also the work in [?], which is
focused on testing, introduces a ‘wait’ construct similar to our delay, along with delay
annotations for actions. [?] introduces a declarative framework for reasoning on service
oriented systems based on a timed extension of Concurrent Constraint Programming.
Activities are organised in sessions, and sessions are explicitly managed via primitives
for requesting and accepting a new instance. Some other extensions introduce timeouts,
e.g., πRT-calculus [16] (absolute, continuous, separate), and [5] where time elapses
by discrete ticks and delays propagate asynchronously through the system. Web-π [?]
and C3 [17] extend the π-calculus and the Conversation Calculus (CC), respectively,
to enable the reasoning on the interplay between time and exceptions. They are both
inspired by the notion of times in [5] and, whereas Web-π focuses on orchestrations
of asynchronous services, C3 focuses on multiparty conversations in a synchronous
scenario. [12] introduces a (dense-time) calculus with a time guard construct [tmin, tmax]
specifying a range for the delay for reaching the next state. The authors define a timed
labelled transitions systems (TLTS) and a system of equations returning the times in
which a process is active.

The main focus of our work is different from the above work: we use timed speci-
fications as types, rather than enriching timed primitives in the π-calculus syntax level
and reason on examples using the timed LTS. Our aim is to define, on the basis of a
timed semantics guided by timed automata, a static checker for time-error freedom and
global time-progress, and to design a scalable language for timed multiparty interac-
tions. With this respect, our calculus is a minimal syntactic extension of the π-calculus
and is simpler than the above calculi. By integrating its primitives with interrupt con-
structs in Scribble and Python [?], we can write most of the use-cases related with time
in [18]. Extensions to other mechanisms such as dynamic time-passing [19] and [16]
at the π-calculus level are possible along the lines of [7] and [?]: we plan to apply
these ideas to future Scribble [21] and Python developments based on our prototype
implementation [1].

B Types - extended definitions and proofs

This appendix includes: (§ B.1) further explanation of the rules in the LTS for TGs,
(§ B.2) definition of projection, (§ B.3) definitions omitted related to LTS of TLs, (§ B.5)
the proof of Theorem 3.3, and (§ B.4) the definition of infinitely satisfiable TGs.
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B.1 More on the LTS of timed global types (rules bASYNC1c and bASYNC2c)

Rules bASYNC1c and bASYNC2c model interactions that appear later (syntactically) but are
not causally dependent from the first interaction. For instance, in (1) below

p→ q : 〈int〉{xp < 20, ,true, }.r→ k : 〈int〉{xr < 10, ,true, } (1)

the second interaction could happen before the first one as p and r are not causally
related; in this case (1) would move by bASYNC1c to

p→ q : 〈int〉{xp < 20, ,true, }.r k : 〈int〉{xr < 10, ,true, } (2)

The case for multiple branches is more delicate. Rule bASYNC1c can be applied only if
(1) the continuation of all branches (i.e., the clause ∀k ∈ I in the premise of bASYNCH1c)
can make the same action, (2) the action is not causally dependent with other that occur
before syntactically (i.e., the clause p,q 6∈ subj(`) in the premise of bASYNC1c). Consider
G in (3) (we omit the time assertions as they are not relevant for our discussion):

G = p→ q : {l1〈int〉{. . .}.G′, l2〈int〉{. . .}.G′}
G′ = r→ k : {l〈int〉{. . .}.G′′} (3)

bASYNCH1c can be applied to G in (3). In fact the continuation G′ in both branch l1 and l2
can make a (causally unrelated) step rk!l〈int〉 hence

G
rk!l〈int〉−−−−−→ p→ q : {l1〈int〉{. . .}.G′′′, l2〈int〉{. . .}.G′′′}

where G′′′ = r k : {l〈int〉{. . .}.G′′}.
Scenarios as the TG in (4) where the continuations of the branches l1 and l2 do not

allow the same action, is ruled out because they are not projectable.

p→ q : { l1〈int〉{. . .}.r→ k : {l3〈int〉{. . .}.G3},
l2〈int〉{. . .}.r→ k : {l4〈int〉{. . .}.G4}}

(4)

(4) is not projectable because the projections of r→ k : {l3〈int〉{. . .}.G3} and r→
k : {l4〈int〉{. . .}.G4} on the sender r cannot be merged (see the definition of merge
operator t after Definition B.1). We can, instead, project the TG in (5):

p→ q : { l1〈int〉{. . .}.q→ k : {l3〈int〉{. . .}.G3},
l2〈int〉{. . .}.q→ k : {l4〈int〉{. . .}.G4}}

(5)

but bASYNCHc cannot be applied as the second interaction is causally dependent from the
first one, i.e., clause p,q 6∈ subj(`) (with ` = qk!l3〈int〉 in this case) in the premise of
bASYNC1c is not satisfied.

B.2 Projection of TGs onto TLs

Definition B.1 describes how to project algorithmically a TG onto its participants.
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Definition B.1 (Projection) Given G the projection of G on a p ∈ G, written G ↓p is
recursively defined as follows assuming p 6= q:

(1) p→ q : {li〈Si〉{BOi,BIi}.Gi}i∈I ↓r=


q⊕{li : 〈Si〉{BOi}.Gi ↓r}i∈I if r= p

p&{li : 〈Si〉{BIi}.Gi ↓r}i∈I if r= q

ti∈IGi ↓r otherwise

(2) (µt.G) ↓r=

{
µt.(G ↓r) if G ↓r 6= t
end otherwise

(3) t ↓r= t (4) end ↓r= end

If no side condition applies then G is not projectable on p. The time assertions are
projected straightforwardly: {δO,λO,δI,λI} is projected onto the sender by keeping only
the output part {δO,λO} and onto the receiver by keeping only the input part {δI,λI}.
The rest of the definition is standard. Case (1) uses the merge operator t [?,?] to ensure
that if the locally observable behaviour of the projected local type is not independent of
the chosen branch then it is identifiable by r via a unique label. If the branches cannot
be merged then the side condition of case (1) is not satisfied. In this paper we consider
TGs that are projectable on all their participants.

The merge operator t [?,?] is defined below

p&{li : 〈Si〉{Bi}.Ti}i∈I tp′&{l j : 〈S′j〉{B′j}.T ′j} j∈J =

p&({lk : 〈Sk〉{Bk}.Tk}k∈I\J ∪{lk : 〈S′k〉{B
′
k}.T

′
k}k∈J\I ∪{lk : 〈Sk〉{Bk}.Tk tT ′k}k∈I∩J)

where for each k ∈ I∩ J, pk = p′k, Sk = S′k and Bk = B′k.

and ensures that either (a) the locally observable behaviour of the projected local type
is either independent of the chosen branch (i.e., Gi ↓r= G j ↓r for all i, j ∈ I), or (b) the
chosen branch is identifiable by r via a unique label. If the side condition of the merge
operator is not satisfied then the two timed local types are not mergeable; in this case
the side condition of case (1) of Definition B.1 of projection is not satisfied.

Definition B.2 (Projectable TG) We say that G is projectable if there exist {Tp}p∈P (G)

such that for all p ∈ P (G), G ↓p= Tp.

In this paper we implicitly consider all G projectable.

B.3 LTS for timed local types

in the LTS for timed local types given in § 3, rule bLTIMEc uses the function ν+ t |=∗
rdy(T ) (omitted in the paper due to space constraints as it is similar to the one used in
the LTS of timed global types). We give in Definition B.3 its formal definition for timed
local types.

Definition B.3 (Ready local clock constraints)

rdy(p⊕{li : 〈Si〉{δi,λi}.Ti}i∈I) = rdy(p&{li : 〈Si〉{δi,λi}.Ti}i∈I) = {δ j}i∈I

rdy(µt.T ) = rdy(T )
rdy(t) = rdy(end) = /0
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B.4 Infinitely satisfiable timed global types

First, we give a general characterisation of constraints that make recursive types possi-
bly unsatisfiable, if clocks are not reset. These constraints, which we will call bad con-
straints, are either unrepeatable constraints (i.e., include equalities) and upper-binding
constraints.

Definition B.4 (Unrepeatable constraint) δ is unrepeatable iff U(δ,true), where

U(δ,b) =


b if δ is of the form x = e
U(δ1,b)∧U(δ2,b) if δ = δ1∧δ2

U(δ′,¬b) if δ = ¬δ′

Definition B.5 (Upper binding constraint) A constraint δ is upper binding iff one of
the following condition holds:

δ is of the form x < e
δ = δ1∧δ2 and δi is upper binding for some i ∈ {1,2}
δ = ¬δ′ and δ′ is upper binding

Definition B.6 (Bad constraint) A constraint δ is bad, written B(δ), if it is unrepeat-
able or upper binding. We write ¬B(δ) if δ is not bad.

We say that p resets x in G iff p ∈ G implies one of the following:

1. G = p→ q : {li〈Si〉{δOi,λOi,δIi,λIi}.Gi}i∈I and

∃J ⊆ I. (∀i ∈ J. x ∈ λOi)∧ (∀i ∈ (I \ J). p resets x in Gi)

2. G = µt.G′ and p resets x in G′

In (1), p resets x in G iff p immediately resets x in some branches J and will reset later
in the remaining branches I \ J.

Infinite satisfiability requires that either all constraints are not bad (1) or each par-
ticipant resets all its clocks at least once within each recursion.

Definition B.7 (Infinitely satisfiable G) G0 is infinitely satisfiable if either:

1. ∀µt.G ∈ G0, ∀p→ q : {li〈Si〉{δOi,λOi,δIi,λIi}.Gi}i∈I ∈ G, ∀i ∈ I,

B(δOi)∧B(δIi)∧λOi = λIi = /0

2. ∀µt.G ∈ G0, ∀p ∈ P (G), ∀x ∈ X(p,G0), p resets x in G.

Recall that X(p,G0) denote the clocks of p in G0. Infinite satisfiability is applied to
checking feasibility and wait-freedom in § E.3 (step 5).
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B.5 Proof of Theorem 3.3 (soundness, completeness of projection)

The proof uses the following lemma.

Lemma B.8 Let G be a (projectable, see Definition B.2) TG, and ν be the overriding
union of the assignments νp of all p ∈ P (G), then for all p ∈ P (G):

ν+ t |=∗ rdy(G) iff νp+ t |=∗ rdy(G ↓p)

The proof of Theorem 3.3 proceeds as the proof of Theorem 3.1 [?, Appendix A.1]. First
we define (as in [?]) a behaviour-preserving subtyping relation T < T ′ between timed
local types which allows to add branches in branching types but not selection types.
This subtyping is extended to configurations as follows: (ν,

#»
T , #»w)< (ν′,

#»
T ′, #»w ′) if #»w =

#»w ′, ν = ν′ and ∀p ∈ P , Tp < T ′p and we obtain the following property: if (ν,
#»
T , #»w) <

(ν′,
#»
T ′, #»w ′) then (ν,

#»
T , #»w)≈ (ν′,

#»
T ′, #»w ′).

Second, to match global and local types step by step, as in [?] we (1) extend pro-
jection to intermediary steps and (2) define projected configuration of a global type G,
written [[G]]{wpq}pq∈P (G) to take into account the content of channels by adding into
the channels the messages sent in intermediary states i.e.,

[[p′ q′ : l〈S〉{A}.G]]{wpq}pq∈P (G) = [[G]]{wpq}pq∈P (G)[wp′q′ = wp′q′ · l〈S〉]

Third, as in [?] we prove the following step equivalence which directly yields the
theorem: if [[G]] < (ν,

#»
T , #»w) then G `−→ G′ ⇔ (ν,

#»
T , #»w)

`−→ (ν′,
#»
T ′, #»w ′) and [[G′]] <

(ν′,
#»
T ′, #»w ′).
The step equivalence is proved by induction on the structure of the transition of G.

For soundness we assume (ν,G)
`−→ (ν′,G′) and show that the corresponding configura-

tion (ν,
#»
T , #»w) can then make a step ` into (ν′′,

#»
T ′′, #»w ′′)< (ν′,

#»
T ′, #»w ′) where (ν′,

#»
T ′, #»w ′)

is the projection [[G′]]{wpq}pq∈P (G) of G′. All the cases are identical to [?], observing
that, by projection, if the clock constraints of G are satisfied then also the constraints
in the corresponding configuration are satisfied since both cock constraints and reset
predicates of G are exactly the same as those of its projections. The only step that is
not treated in [?] is the time transition by bTIMEc. This case follows by Lemma B.8. In
fact, if (ν,G)

t−→ (ν′,G′) then the premise of bTIMEc – ν+ t |=∗ rdy(G) – is satisfied. By
Lemma B.8, ν+ t |=∗ rdy(G) yields ν+ t |=∗ rdy(Ti) for all projections Ti hence the
premise of bLTIMEc for all Ti is satisfied and the configuration can make a time step t.

Completeness proceeds similarly to [?] except the step bTIMEc which also follows
by Lemma B.8.

C Processes - extended definitions

This appendix includes: (§ C.1) the full rules of structural equivalence for processes,
and (§ C.2) the syntax, reduction rules for processes and proof rules for programs with
explicit constructs for delegation,
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C.1 Structural equivalence

The structural equivalence relation for processes is the least equivalence relation satis-
fying the following rules where we denote n for s and a:

P | 0≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)
(νn)P | Q≡ (νn)(P | Q) if n 6∈ fn(Q)
(νn)(νn′)P≡ (νn′)(νn)P (νn)0≡ 0
µX .P≡ P[µX .P/X ]

(νs)s : /0≡ 0
s : (p,q,n) · (p′,q′,n′) ·h≡ s : (p′,q′,n′) · (p,q,n) ·h if p 6= p′ or q 6= q′

delay(t + t ′).P≡ delay(t).delay(t ′).P delay(0).P≡ P
delay(t).(νa)P≡ (νa)delay(t).P delay(t).(P | Q)≡ delay(t).P | delay(t).Q

The rules at the top are standard. We just recall that rule (νs)s : /0 ≡ 0 is for garbage
collection of queues of terminated sessions, and the rule for queues in the last line (on
the top) is for permuting messages that are causally unrelated (i.e., can be received in
any order due to asynchrony). At the bottom, delay(t).delay(t ′).P≡ delay(t + t ′).P
breaks a delay into smaller intervals, delay(0).P≡ P always allows time to elapse for
idle processes, and the rules in the second line distribute a delay within a shared name
restriction and in parallel compositions.

C.2 Processes with explicit delegation

For simplicity of presentations of the proofs, the syntax in Figure 6 divides the syntax
in the main section into explicit constructs for session delegation and constants [6]. We
also set delegation interactions (both outgoing and incoming) have only one branch.
The extension to multiple branches is mechanical.

P ::= u[n](y).P Request
| u[i](y).P Accept
| c[p]/ l〈e〉;P Select
| c[p].{li(zi).Pi}i∈I Branching
| c[p]/ 〈〈c′,ν〉〉;P Delegate
| c[p]. ((y)).P Session receive
| delay(t).P Delay
| if e then P else Q Conditional

| P | Q Parallel
| 0 Inaction
| µX .P Recursion
| X Variable
| (νa)P Hide Shared
| (νs)P Hide Session
| s : h Queue

Fig. 6. Syntax of processes with explicit constructs for delegation

Hereafter in this appendix we will use the following reduction rules for processes:
the rules presented in Figure 2 where bSELc and bBRAc are only used when the sort of the
exchanged message is not of the form (T,δ), and the rules for delegation in Figure 7 for
the delegation cases.

The proof rules for programs for the syntax with explicit delegation are: the rules
in Figure 8 without bVBRAc and bVSELc (which are substituted with the new rules in
Figure 8), and the rules in Figure 8.
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s[p][q]/ 〈〈s′[p′]〉〉;P | s : h −→ P | s : h · (p,q,s′[p′]) bDELc
s[p][q]. ((y)).P | s : (p,q,s′[p′]) ·h −→ P[s′[p′]/y] | s : h bSRECc

Fig. 7. Additional reduction rules for processes (for explicit modelling of delegation)

bVSELc j ∈ I Γ ` e : S j Γ ` P.∆,c : ([λ j 7→ 0]ν,Tj) ν |= δ j

Γ ` c[p]/ l j〈e〉;P.∆,c : (ν,p⊕{li : 〈Si〉{δi,λi}.Ti}i∈I)

bVDELc Γ ` P.∆,c : ([λ 7→ 0]ν,T ′) ν |= δ νd |= δd
Γ ` c[p]/ 〈〈c′〉〉;P.∆,c : (ν,p⊕〈(Td ,δd)〉{δ,λ}.T ′),c′ : (νd ,Td)

bVBRAc ∀i ∈ I Γ,zi : Si ` Pi .∆,c : ([λi 7→ 0]ν,Ti) ν |= δi
Γ ` c[p].{li(zi).Pi}i∈I .∆,c : (ν,p&{li : 〈Si〉{δi,λi}.Ti}i∈I)

bVSRECc Γ ` P.∆,c : ([λ 7→ 0]ν,T ′),y : (νd ,Td) ν |= δ νd |= δd
Γ ` c[p]. ((y)).P.∆,c : (ν,p&〈(Td ,δd)〉{δ,λ}.T ′)

Fig. 8. Proof rules for programs with explicit delegation

C.3 Extension to runtime processes
In this appendix we extend the typing system of programs to type run-time processes
in which sessions have been initiated and queues may be non-empty. This extension is
necessary for subject reduction.

We first extend timed local types to include run-time queues.

M ::= 〈p,U〉 |M;M Message Types
T ::= M | T |M;T Generalised Types
Σ ::= M | (ν,T ) Generalised Specifications
U ::= l〈S〉

The equivalence relation ≡ for generalised specifications is as follows:

〈p,U〉;〈p′,U ′〉;M ≡ 〈p′,U ′〉;〈p,U〉;M if p 6= p′

M ≡M′ implies M;T ≡M′;T
T ≡ T ′ implies (ν,T )≡ (ν,T ′)

We will use (generalised) session environments mapping s[p] to generalised speci-
fications. A session environment can be combined with another session environments
containing only message types as follows:

∆;{s[p] : M}=

{
∆′,s[p] : M′;M if ∆ = ∆′,s[p] : M′

∆,s[p] : M otherwise

Figure 9 generalises the proof rules for programs in Figure 8 to processes. The
proof rules for queues are on the top of Figure 9. The generalised proof rules rely on
the following definitions:

– ∆≡ ∆′ if c : Σ ∈ ∆ and Σ 6= (ν,end) imply c : Σ′ ∈ ∆′ with Σ≡ Σ′ and vice-versa.
– ∆∗∆′ = ∆\dom(∆′)∪∆′ \dom(∆)∪{y : Σ∗Σ′ | y : Σ ∈ ∆∧ y : Σ′ ∈ ∆′}

– Σ∗Σ′ =


Σ;Σ′ if Σ is a message type
Σ′;Σ if Σ′ is a message type
undefined otherwise
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Γ ` s : /0. /0

Γ ` s : h.∆ Γ ` v : S
Γ ` s : h · (p,q, l〈v〉).∆;{s[p] : 〈q, l〈S〉〉}

bQINITc/bQSENDc

Γ ` s : h.∆

Γ ` s : h · (p,q,s′[p′]).∆;s′[p′] : (ν,T );{s[p] : 〈q,〈(T,δ)〉〉}
bQDELc

Γ ` P.∆ ∆≡ ∆′

Γ ` P.∆′
Γ ` P.∆ Γ ` Q.∆′

Γ ` P | Q.∆∗∆′
bEQUIVc/bGPARc

Γ,a : 〈G〉 ` P.∆

Γ ` (νa)P.∆

Γ ` P.∆′;{s[pi] : Σi}i∈I {s[pi] : Σi}i∈I coherent
Γ ` (νs)P.∆′

bGNRES/GSRESc

Fig. 9. Proof rules for processes (the rules on the top are for queues)

Note on coherence of Σ The projection of the generalised local timed type T ↓q is a
straightforward extension of the one in [6] (where constraints are just projected as they
are). The duality relation of local timed types, written T ./ T ′ is also derived from [6]
(where the relation holds for any clock constraints and reset predicate). (ν,T ) ./ (ν′,T ′)
if T ./ T ′. We say that ∆ = {s[pi] : Σi}i∈I is coherent if s[p] : (ν,T ) ∈ ∆ and T ↓q 6= end

imply s[q] : T ′ ∈ ∆ and T ↓q./ T ′ ↓p.
Reduction rules for session environments are in Figure 10.

i ∈ J δi |= ν if λi = /0 then ν′ = ν else ν′ = 0

{s[p] : (ν,M;q⊕{l j : 〈S j〉{δ j,λ j}.Tj} j∈J)} −→{s[p] : (ν′,M;〈q, li〈Si〉〉;Ti)}
[RSend]

i ∈ J δi |= ν if λi = /0 then ν′ = ν else ν′ = 0
{s[p] : (ν,〈q, li〈Si〉〉;T );s[q] : (ν′′,p&{l j : 〈S j〉{δ j,λi}.Tj} j∈J)} −→

{s[p] : (ν,T );s[q] : (ν′,Ti)}

[RRec]

∀i ∈ I, j ∈ J, νi j + t |= rdy(Ti j)

{{si[p j] : (νi j,Ti j)} j∈Ji}i∈I −→ {{si[p j] : (νi j + t,Ti j)} j∈Ji}i∈I
[RTime]

∆−→ ∆′ ∆′ not after ∆

∆∪∆′′ −→ ∆′∪∆′′
[RPar]

∆
′ not after ∆ if ∀s[p] ∈ Dom(∆), ∆(s[p]) = (ν,Σ) implies

∆
′(s[p]) is either (ν,Σ′) or (0,Σ′) for some Σ

′

Fig. 10. Reduction rules for specifications

D Time-error freedom - definitions and proofs
This appendix includes: (§ D.1) the proof of type preservation under structural equiv-
alence, (§ D.2) auxiliary lemmas for type preservation under reduction (subject reduc-
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tion), (§ D.3) the proof of subject reduction, (§ D.4) auxiliary lemmas for time-error
freedom and (§ D.5) the proof of time-error freedom.

D.1 Type preservation under equivalence
The proof rules in Figure 8 ensure type preservation under structural equivalence, which
we prove below after giving an auxiliary lemma.

Lemma D.1 If ∆=∆P ∗∆Q and dom(∆P)∩dom(∆Q) = /0, then ∆+t = (∆P+t)∗(∆Q+
t) and dom(∆P + t)∩dom(∆Q + t) = /0.

Theorem D.2 (Type preservation under equivalence) If Γ ` P .∆ and P ≡ P′ then
Γ ` P′ .∆.

Proof. We only show the cases for delay processes. The other cases are as in [6].
The case for delay(t).0≡ 0 follows from the fact that both processes can be always

validated (for all t): the first by one application of rule bVTIMEc and one of bENDc, and
the second one application of rule bENDc.

The case for delay(t + t ′).P ≡ delay(t).delay(t ′).P proceeds as follows. If Γ `
delay(t).delay(t ′).P.∆ then by Lemma D.3 (6) we obtain Γ ` P.∆+ t + t ′ which by
associativity of sum of non-negative reals yields

Γ ` P.∆+(t + t ′) (6)

By proof rule bVTIMEc on (6) we obtain Γ ` delay(t + t ′).P.∆ as required. If, reversely
Γ ` delay(t + t ′).P.∆ by applying once Lemma D.3 (6) we obtain Γ ` P.∆+(t + t ′)
which by associativity of + yields

Γ ` P.∆+ t + t ′ (7)

By applying twice rule bVTIMEc on (7) we obtain Γ ` delay(t).delay(t ′).P.∆ .
The case for delay(t).(νa)P ≡ (νa)delay(t).P proceeds as follows. We first con-

sider the case Γ ` delay(t).(νa)P.∆. By premise of bVTIMEc,

Γ ` (νa)P.∆+ t (8)

and by premise of bGNRESc on (8)

Γ,a : 〈G〉 ` P.∆+ t (9)

We apply (9) as a premise of bVTIMEc obtaining

Γ,a : 〈G〉 ` delay(t).P.∆ (10)

and apply (10) as the premise of bGNRESc obtaining Γ ` (νa)delay(t).P.∆ as required.
The case for Γ ` (νa)delay(t).P.∆ proceeds similarly.

The case for delay(t).(P | Q) ≡ delay(t).P | delay(t).Q proceeds as follows. If
Γ ` delay(t).(P | Q).∆ then by premise of bVPARc

Γ ` delay(t).P.∆P Γ ` delay(t).Q.∆Q (11)
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where ∆ = ∆P ∗∆Q and by the premise of bVTIMEc on each judgement in (11)

Γ ` P.∆P + t Γ ` Q.∆Q + t (12)

We apply both judgements in (12) each as the premise of bVPARc and by Lemma (D.1):

Γ ` P | Q.∆+ t (13)

We apply (13) as the premise of bVTIMEc obtaining Γ ` delay(t).(P |Q).∆, as required.
The case for Γ ` delay(t).(P | Q).∆ proceeds similarly.

D.2 Auxiliary lemmas (type preservation under reduction)
Lemma D.3 (Inversion Lemma) The following holds (by induction on derivations):

1. If Γ ` P | Q.∆ then ∆ = ∆1 ∗∆2, and Γ ` P.∆1 and Γ ` Q.∆2.
2. If Γ ` c[p]/ li〈e〉;P.∆ then

(a) Γ ` e : S j,
(b) i ∈ J,
(c) ∆ = ∆′,c : (ν,p⊕{l j : 〈S j〉{δ j,λ j}.Tj} j∈J),
(d) δi |= ν,
(e) Γ ` P.∆′,c : (ν′,Ti) with ν′ = ν if λi = /0 and ν′ = 0 otherwise.

3. If Γ ` c[p]/ 〈〈c′〉〉;P.∆ then
(a) ∆ = ∆′,c : (ν,p⊕〈(Td ,δd)〉{δ,λ}.T ),c′ : (νd ,Td),
(b) δ |= ν,
(c) δd |= νd ,
(d) Γ ` P.∆′,c : (ν′,T ) with ν′ = ν if λi = /0 and ν′ = 0 otherwise.

4. If Γ ` c[p].{li(zi).Pi}i∈I .∆ then
(a) ∆ = ∆′,c : (ν,p&{li : 〈Si〉{δi,λi}.Ti}i∈I),
(b) ∀i ∈ I, δi |= ν,
(c) ∀i ∈ I Γ ` Pi[v/zi].∆′,c : (ν′,Ti) with ν′ = ν if λi = /0 and ν′ = 0 otherwise.

5. If Γ ` c[p]. ((y)).P.∆ then
(a) ∆ = ∆′,c : (ν,p&〈(Td ,δd)〉{δ,λ}.T ),
(b) δi |= ν,
(c) δd |= νd ,
(d) Γ ` P.∆′,c : (ν′,T ),y : (νd ,Td) with ν′ = ν if λi = /0 and ν′ = 0 otherwise, and

νd |= δd .
6. If Γ ` delay(t).P.∆ then

(a) ∆ = {ci : (νi,Ti)},
(b) Γ ` P.{ci : (νi + t,Ti)}

7. If Γ ` s : h · (p,q, l〈v〉).∆ then
(a) ∆ = ∆′;{s[p] : 〈q, l〈S〉〉},
(b) Γ ` s : h.∆′

8. If Γ ` s : h · (p,q,s′[p′]).∆ then
(a) ∆ = ∆′;{s[p] : 〈q,〈(Td ,δd)〉〉},s′[p′] : (νd ,Td),
(b) Γ ` s : h.∆′

Lemma D.4 (Satisfiability upon validation) If Γ ` P.∆ with ∆ = {ci : (νi + t,Ti)}i∈I
for some t ≥ 0 then ∀i ∈ I, νi + t |=∗ rdy(Ti).
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Proof The proof is my induction on the proof tree of P, with a case analysis of the
final rule. We only show the case for selection. The cases for delegation and branching
proceed similarly to the case for selection. The remaining cases are straightforward
(e.g., for parallel, delay and recursion they hold by inductive hypothesis, for end and
recursive call rdy() is trivially satisfiable). If the last rule is bVSELc, Γ` c[p]/ lk〈e〉;P.∆.
By Lemma D.3 (2))

∆ = ∆
′,c : (ν+ t,p⊕{l j : 〈S j〉{δ j,λ j}.Tj} j∈J) k ∈ J (14)

and
δk = ν+ t (15)

By Definition B.3

rdy(p⊕{l j : 〈S j〉{δ j,λ j}.Tj} j∈J) = {δ j} j∈J (16)

By Definition B.3 it is sufficient that one of δ j is satisfiable for {δ j} j∈J to be satisfiable.
Hence by (15), (16) is satisfiable after t in ν, i.e., ν+ t |=∗ {δ j} j∈J . The thesis follows
by induction.

D.3 Proof of Theorem 4.3 (type preservation – subject reduction)

Remark D.1. In the statement of Theorem 4.3, P is typed against empty ∆ meaning that
either (1) P has not started any session yet, or (2) P models a whole system, that is
including all participants of all ongoing sessions, technically P ≡ (ν #»s )P′ for some #»s ′

and with P′ having no free session names. Note in fact that by rule bGSRESc in Figure 9
a whole system (νs)P is typed against /0 as long as P is typed against a set of coherent
types.

We have stated this special case in the paper for conciseness (as it did not require
to introduce the semantics of ∆). Here, however, we proceed as customary and prove
Theorem 4.3 via its general case (which subsumes Theorem 4.3).

Theorem D.5 (Type preservation for open systems) If Γ ` P .∆ and P −→ P′, then
there exists ∆′ such that ∆−→ ∆′ and Γ ` P′ .∆′

Theorem D.5 requires to extend the typing rules for programs to processes (this
extension is mechanical and similar to the one in [6], and is reported in Appendix C.3).
The proof is by induction on the derivation P −→ P′, with a case analysis on the final
rule (using Theorem D.2 for the structural equivalence).

– bLINKc - This case proceeds as in [6] (Appendix A - Proof of Theorem 4.1).
– bSELc - If the reduction is by bSELc then s[p][q]/ l j〈e〉;P | s : h−→P | s : h ·(p,q, l〈v〉)

(with e ↓ v), and by hypothesis

Γ ` s[p][q]/ l j〈e〉;P | s : h.∆

By Lemma D.3 (1)
Γ ` s[p][q]/ l j〈e〉;P.∆1 (17)
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and
Γ ` s : h.∆2 (18)

with ∆1 ∗∆2 = ∆. By Lemma D.3 (2) on (17)

∆1 = ∆
′
1,s[p] : (ν,q⊕{li : 〈Si〉{δi,λi}.Ti}i∈I) (19)

with Γ ` e : S j which, by subject reduction of expressions, yields

Γ ` v : S j (20)

Furthermore, also by Lemma D.3 (2) on (17):

Γ ` P.∆
′
1,s[p] : (ν′,Tj) with ν

′ = ν if λ j = /0 and ν
′ = 0 otherwise (21)

δ j |= ν (22)

By bQSENDc on (18) we derive

Γ ` s : h · (p,q, l j〈v〉).∆2,{s[p] : 〈q, l j〈S j〉〉} (23)

Using bGPARc on (21) and (23)

Γ ` P | s : h · (p,q, l j〈v〉). (∆′1,s[p] : (ν′,Tj))∗∆2;{s[p] : 〈q, l j〈S j〉〉}

Note that by bRPARc with premise bRSENDc – the latter can be applied thanks to (22)
– on ∆1 ∗∆2 where ∆1 is as in (19):

(∆′1,s[p] : (ν,q⊕{li : 〈Si〉{δi,λi}.Ti}i∈I)∗∆2−→ (∆′1,s[p] : (ν′,Tj))∗(∆2,{s[p] : 〈q, l j〈S j〉〉})

– bBRAc - If the reduction is by bBRAc then s[p][q].{li(zi).Pi}i∈I | s : (p,q, l j〈v〉) ·h−→
Pj[v/z j] | s : h, and by hypothesis

Γ ` s[p][q].{li(zi).Pi}i∈I | s : (p,q, l j〈v〉) ·h.∆

By Lemma D.3 (1)
Γ ` s[p][q].{li(zi).Pi}i∈I .∆1 (24)

and
Γ ` s : (p,q, l j〈v〉) ·h.∆2 (25)

with ∆1 ∗∆2 = ∆. By Lemma D.3 (4) on (24)

∆1 = ∆
′
1,s[p] : (ν,q&{li : 〈Si〉{δi,λi}.Ti}i∈I) (26)

and

∀i ∈ I Γ ` Pi[v/zi].∆
′
1,s[p] : (ν′,Ti) with ν

′ = ν if λi = /0 and ν
′ = 0 otherwise

(27)
∀i ∈ I δi |= ν (28)
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By Lemma D.3 (7) on (25)

Γ ` s : h.∆
′
2 ∆2 = ∆

′
2,{s[p] : 〈q, li〈Si〉〉} (29)

Using bGPARc on (27) and (29) for all i ∈ I:

Γ ` P[v/z j] | s : h. (∆′1,s[p] : (ν′,Tj))∗∆
′
2

Note that by bRPARc with premise bRRECc – the latter can be applied thanks to (28)
– on ∆1 ∗∆2:

(∆′1,s[p] : (ν,q&{li : 〈Si〉{δi,λi}.Ti}i∈I)∗∆
′
2,{s[p] : 〈q, l j〈S j〉〉}−→ (∆′1,s[p] : (ν′,Tj))∗∆

′
2

– bSRECc - If the reduction is by bSRECc then s[p][q] . ((y)).P | s : (p,q,s′[p′]) · h −→
P[s′[p′]/y] | s : h, and by hypothesis

Γ ` s[p][q]. ((y)).P | s : (p,q,s′[p′]) ·h.∆

By Lemma D.3 (1)
Γ ` s[p][q]. ((y)).P.∆1 (30)

and
Γ ` s : (p,q,s′[p′]) ·h.∆2 (31)

with ∆1 ∗∆2 = ∆. By Lemma D.3 (5) on (30)

∆1 = ∆
′
1,s[p] : (ν,q&〈(Td ,δd)〉{δ,λ}.T ) (32)

and

Γ`P[s′[p′]/y].∆
′
1,s[p] : (ν′,T ),s′[p′] : (νd ,Td) with ν

′ = ν if λi = /0 and ν
′ = 0 otherwise

(33)
and

δ |= ν δd |= νd (34)

By Lemma D.3 (8) on (31)

Γ ` s : h.∆
′
2 ∆2 = ∆

′
2,{s[p] : 〈q,〈(Td ,δd)〉〉},s′[p′] : (νd ,Td) (35)

Using bGPARc on (33) and (35):

Γ ` P[s′[p′]/y] | s : h.∆
′
1,s[p] : (ν′,T ),s′[p′] : (νd ,Td)∗∆

′
2

Note that by bRPARc with premise bRRECc – the latter can be applied thanks to (34)
– on ∆1 ∗∆2:

(∆′1,s[p] : (ν,q&〈(Td ,δd)〉{δ,λ}.T )∗∆′2,{s[p] : 〈q,〈(Td ,δd)〉〉},s′[p′] : (νd ,Td)−→
(∆′1,s[p] : (ν′,T ))∗∆′2
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– bDELc - If the reduction is by bDELc then s[p][q] / 〈〈s′[p′]〉〉;P | s : h −→ P | s : h ·
(p,q,s′[p′]), and by hypothesis

Γ ` s[p][q]/ 〈〈s′[p′]〉〉;P | s : h.∆

By Lemma D.3 (1)
Γ ` s[p][q]/ 〈〈s′[p′]〉〉;P.∆1 (36)

and
Γ ` s : h.∆2 (37)

with ∆1 ∗∆2 = ∆. By Lemma D.3 (3) on (36)

∆1 = ∆
′
1,s[p] : (ν,q⊕〈(Td ,δd)〉{δ,λ}.T ),s′[p′] : (νd ,Td), (38)

and

Γ ` P.∆
′
1,s[p] : (ν′,T ) with ν

′ = ν if λ = /0 and ν
′ = 0 otherwise (39)

δ |= ν and δd |= νd (40)
By bQDELc on (37) we derive

Γ ` s : h · (p,q,s′[p′]).∆2,{s[p] : 〈q,〈(Td ,δd)〉〉} (41)

Using bGPARc on (39) and (41)

Γ ` P | s : h · (p,q,〈(Td ,δd)〉). (∆′1,s[p] : (ν′,T ))∗∆2,{s[p] : 〈q,〈(Td ,δd)〉〉}

Note that by bRPARc with premise bRSENDc – the latter can be applied thanks to (40)
– on ∆1 ∗∆2 where ∆1 is as in (19):

(∆′1,s[p] : (ν,q⊕〈(Td ,δd)〉{δ,λ}.T )∗∆2 −→ (∆′1,s[p] : (ν′,〈q,〈(Td ,δd)〉〉;T ))∗∆2

with

(∆′1,s[p] : (ν′,〈q,〈(Td ,δd)〉〉;T ))∗∆2 =(∆′1,s[p] : (ν′,T ))∗∆2,{s[p] : 〈q,〈(Td ,δd)〉〉}
– bDELAYc - If the reduction is by bDELAYc then delay(t).Pi |∏ j∈J s j : h j −→P∏ j∈J s j :

h j, and by hypothesis

Γ ` delay(t).P |∏
j∈J

s j : h j .∆

By Lemma D.3 (1)

Γ ` delay(t).Pi .∆1 Γ `∏
j∈J

s j : h j .∆2 (δ = δ1 ∗δ2) (42)

By Lemma D.3 (6) on (42 - judgement on the left hand side) ∆1 = {s j[p j] : (ν j,Tj)} j∈J
and

Γ ` P.∆
′
1 (∆′1 = {s j[p j] : (ν j + t,Tj)} j∈J) (43)

Using (43) as a premise of (bVPARc), observing that dom(∆1)∩ dom(∆2)} = /0 im-
plies dom(∆′1)∩dom(∆2)}= /0

Γ ` P |∏
j∈J

s j : h j .∆
′
1 ∗∆2 (44)

By Lemma D.4 on (44)(recall ∆′1 = {s j[p j] : (ν j + t,Tj)} j∈J), Tj is satisfiable after
t in ν j, hence by bRTIMEc ∆−→ ∆′1 ∗∆2.
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P ::= u[n](y).P Request
| u[i](y).P Accept
| c[p]/{δ,λ}l〈e〉;P Select
| c[p].{{δi,λi}li(zi).Pi}i∈J Branching
| c[p]/{δ,λ}〈〈c′,ν〉〉;P Delegate
| c[p].{δ,λ}((y)).P Session receive
| delay(t).P Delay
| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| µX .P Recursion
| error Error

| X Variable
| (νa)P Hide Shared
| (νs)P Hide Session
| (c,ν) Clock Assignment
| s : h Queue

h ::= /0 | h · (p,q,m) (queue content)
m ::= l〈v〉 (messages)
c ::= s[p] | y (session names/variables)
u ::= a | z (shared names/variables)
n ::= a | s (names)

Fig. 11. Extended syntax of processes for time-error freedom.

D.4 Auxiliary definitions and lemmas (time-error freedom)
Technically, we can prove error freedom through the following steps.

Step 1 - extend processes In our scenario an error state, which we call error, is a state
reached when a process violates the clock constraints associated to the action prescribed
by the corresponding local timed type. To model reduction to error states we extend the
syntax of processes with clock constraints, reset predicate and clock assignment (see
Figure 11).
Step 2 - extend reductions The extended reduction rules are given in Figure 12, plus
rules bIFTc, bIFFc, bCONTc, bSTRc, and bCOMc, from Figure 2 that remain unchanged. Rule
bLINKc extends session initiation by adding an initial clock assignment (s[i],ν0) for
each participant i of the new session. The rules for selection and branching, bSELc and
bBRAc check clock constraints against clock assignments and appropriately reset the
clock assignments. Rules bDELc and bSRECc for session delegation update the set of clock
processes. Time actions by bDELAYc increment the clock assignments. We introduce error
reductions to be triggered when a process tries to perform an action in a time that
does not satisfy the prescribed constraint: bEBRAc, bESELc, bEDELc and bESRECc are error
reductions for send, branching, delegation, session receive. Note that rules bEBRAc and
bESRECc can be applied both when p tries to read too early or too late w.r.t. the prescribed
time.
Step 4 - Extended Validation Rules Figure 13 gives the extended proof rules for pro-
cesses with errors and clocks. We show the rules that are different from Figure 8 and
omit the rules that are unchanged.

Lemma D.6 If Γ ` P.∆, then P 6≡ error.

The proof of Lemma D.6 is mechanical by induction on G proceeding by case anal-
ysis and inspecting the extended proof rules.

D.5 Proof of Theorem 4.4 (time-error freedom)
Let Γ ` P0 .∆ and P0 −→∗ P −→ P′. We proceed by induction on the length of the
reduction: we assume by induction that P 6≡ error and proceed by case analysis on the
last reduction P−→ P′.
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∀i ∈ {1, ..,n} s 6∈ fn(Pi)

a[n](y).P1 |∏i∈{2,..,n} a[i](y).Pi −→ (νs)(∏i∈{1,..,n}(Pi[s[i]/y] | (s[i],ν0)) | s : /0)
bLINKc

e ↓ v ν
′ = [λ 7→ 0]ν δ |= ν

s[p][q]/{δ,λ}l〈e〉;P | s : h | (s[p],ν)−→ P | s : h · (p,q, l〈v〉) | (s[p],ν′)
bSELc

j ∈ J ν
′ = [λ j 7→ 0]ν δ j |= ν

s[p][q].{{δi,λi}li(zi).Pi}i∈J | s : (p,q, l j〈v〉) ·h | (s[p],ν)−→ Pj[v/z j] | s : h | (s[p],ν′)
bBRAc

ν
′ = [λ 7→ 0]ν δ |= ν

s[p][q]/{δ,λ}〈〈s′[p′],ν′′〉〉;P | s : h | (s[p],ν) | (s′[p′],ν′′)−→ P | s : h · (p,q,(s′[p′],ν′′)) | (s[p],ν′)
bDELc

ν
′ = [λ 7→ 0]ν δ |= ν

s[p][q].{δ,λ}((y)).P | s : (p,q,(s′[p′],ν′′)) ·h | (s[p],ν)−→ P[s′[p′]/y] | s : h | (s[p],ν′) | (s′[p′],ν′′)
bSRECc

delay(t).P |∏ j∈J(s j : h j |∏k∈K j (s j[pk],νk)) |−→ P |∏ j∈J(s j : h j |∏k∈K j (s j[pk],νk + t)) bDELAYc

j ∈ J ¬δ j |= ν

s[p][q].{{δi,λi}li(zi).Pi}i∈J | s : h | (s[p],ν)−→ error | s : h | (s[p],ν)
bEBRAc

¬δ |= ν

s[p][q]/{δ,λ}l〈e〉;P | s : h | (s[p],ν)−→ error | s : h | (s[p],ν)
bESELc

¬δ |= ν

s[p][q]/{δ,λ}〈〈s′[p′],ν〉〉;P | s : h | (s[p],ν) | (s′[p′],ν′′)−→ error | s : h | (s[p],ν) | (s′[p′],ν′′)
bEDELc

¬δ |= ν

s[p][q].{δ,λ}((y)).P | s : h | (s[p],ν)−→ error | s : h | (s[p],ν)
bESRECc

Fig. 12. Extended reduction (showing modified/added rules, omitting rules that are as in Figure 2).

In the case analysis, we use again induction on the (depth of the tree of the) reduc-
tion rule applied. The inductive cases, bCONTc, bSTRc and bCOMc, and are straightforward.
We consider now the base cases. If the last reduction is by rules bLINKc, bDELAYc, bSELc,
bBRAc, bDELc, bSRECc, bIFTc, or bIFFc, then P′ 6= error since (1) the rules do not introduce
error processes, and (2) error processes are a run-time process which cannot appear as
a continuation of P. Furthermore, we can proceed similarly to Theorem 4.3 and show
that Γ′ ` P′ .∆′ for some Γ′ and ∆′ (obtained by some reduction from Γ and ∆). This
yields the result for these cases.

The only reductions that introduce error processes are bESELc, bEBRAc, bEDELc, bESRECc.
We consider bESELc (the others proceed similarly). Assume bESELc can be applied to P
which is therefore of the following form: s[p][q]/{δ,λ}l〈e〉;P′. Then by bESELc

¬ν |= δ (45)

By hypothesis P is well typed. By inspecting the validation rules, the derivation of
s[p][q]/{δ,λ}l〈e〉;P′ is done by applying the rule bVSELc

Γ ` e : S j Γ ` P′ | (s[p],ν′).∆,s[p] : (ν′,T ′) ν
′ = [λ j 7→ 0]ν ν |= δ

Γ ` s[p][q]/{δ,λ}l〈e〉;P′ | (s[p],ν).∆,s[p] : (ν,q⊕{li : 〈Si〉{δi,λi}.T ′i }i∈I)

with the condition ν |= δ, which contradicts (45) and the fact that bESELc can be applied.
The fact that none of the reductions that introduce errors can be applied (together with
the fact that P 6≡ error) yields the thesis.
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Γ,u : G ` P | (y[1],ν0).∆,y[1] : (ν0,G ↓1)dom(ν0) = {x1} ν0(x1) = 0
Γ,u : G ` u[n](y).P.∆

bVREQc

Γ,u : G ` P | (y[i],ν0).∆,y[i] : (ν0,G ↓i)dom(ν0) = {xi} ν0(xi) = 0 i 6= 1
Γ,u : G ` u[i](y).P.∆

bVACCc

j ∈ I Γ ` e : S j Γ ` P | (c,ν′) |∏(ci,νi).∆,c : (ν′,Tj) ν
′ = [λ j 7→ 0]ν δ j |= ν

Γ ` c[p]/{δ,λ}l j〈e〉;P | (c,ν) |∏(ci,νi).∆,c : (ν,p⊕{li : 〈Si〉{δi,λi}.Ti}i∈I)
bVSELc

Γ ` P | (c,ν′) |∏(ci,νi).∆,c : (ν′,T ′) ν
′ = [λ 7→ 0]ν ν |= δ νd |= δd

Γ ` c[p]/{δ,λ}〈〈c′,νd〉〉;P | (c,ν) | (c′,νd) |∏(ci,νi).∆,c : (ν,p⊕〈(Td ,δd)〉{δ,λ}.T ′),c′ : (νd ,Td)
bVDELc

∀i ∈ I Γ,zi : Si ` Pi | (c,ν′i) |∏(ci,νi).∆,c : (νi,Ti) ν
′
i = [λi 7→ 0]ν ν |= δi

Γ ` c[p].{{δi,λi}li(zi).Pi}i∈J | (c,ν) |∏(ci,νi).∆,c : (ν,p&{li : 〈Si〉{δi,λi}.Ti}i∈I)
bVBRAc

Γ ` P | (c,ν′) |∏(ci,νi).∆,c : (ν′,T ′),y : (νd ,Td) ν
′ = [λ 7→ 0]ν ν |= δ νd |= δd

Γ ` c[q].{δ,λ}((y)).P | (c,ν) | (c′,νd) |∏(ci,νi).∆,c : (ν,p&〈(Td ,δd)〉{δ,λ}.T ′)
bVSRECc

Γ ` P | (s[p],ν+ t) |∏(ci,νi + t).{ci : (νi + t,Ti)}i∈I

Γ ` delay(t).P | (s[p],ν) |∏(ci,νi).{ci : (νi,Ti)}i∈I
bVTIMEc

dom(∆1)∩dom(∆2) = /0

Γ ` Pi .∆i Pi ≡ P′i | (c,ν)⇒ c 6∈ dom(∆ j) i 6= j ∈ {1,2}
Γ ` P1 | P2 .∆1,∆2

bVPARc

∀c ∈ dom(∆) ∆(c) = (ν,end)

Γ ` 0 |∏
i
(ci,νi).∆

bVENDc

Fig. 13. Extended reduction rules (with error processes).

E Feasibility and wait-freedom - definitions and proofs
This appendix includes: (§ E.1) definition of time graphs used by the checker for fea-
sibility and way-freedom, (§ E.2) definition of virtual state, (§ E.3) the algorithms for
checking feasibility and wait-freedom, auxiliary lemmas on (§ E.4) general properties
of clock constraints in recursions, (§ E.5) feasibility, and (§ E.6) wait-freedom, and
(§ E.7) the proof of Proposition 5.1. We will use the assumptions and definition dis-
cussed below.

Remark E.1. In § 3, following [3, Definition 3.6], the syntax of δ does not allow clocks
comparison. For instance, clocks of the form x < x′ cannot be expressed. Constraints
can, however, be defined on more than one clock (e.g., x1 < 10∧ x2 > 3).

Remark E.2. In the proofs we assume that each participant owns at most one clock. This
assumption is without loss of generality because of the compositionality of the checker
in § E.3 w.r.t. the different clocks of a participant. Definitions E.7 and E.10 (checking
satisfiability/wait-freedom in a state) can be decomposed in independent checks on each
clock owned by the participant performing an action in that state. In fact, there are
no interdependencies on the values of clocks in a given state (clock comparisons are
not allowed - see Remark E.1). The extension of the proofs to multiple participants is
mechanical (and verbose) hence omitted.
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Remark E.3. We assume fairness in the choice of branches: (1) if a branching is met in-
finitely often each branch is eventually taken, assuming that its constraint is satisfiable,
and (2) if a communication step can occur it will not be deferred infinitely often.

By Remark E.1, for every δ built with the syntax in § 3 we can build a logically
equivalent (by associativity and commutativity of logical conjunction) constraint δ′ of
the form δ0∧ (∧x∈fn(δ)δx) where fn(δ0) = /0, and fn(δx) = x for all x ∈ fn(δ). We call δ′

a canonical form of δ. Note that δ may have more than one canonical forms, which are
logically equivalent, and that δ /0 is logically equivalent to either true or false.

Definition E.1 (Components of δ) Let δ be a clock constraint (defined with the syntax
in § 3) and δ0 ∧ (∧x∈fn(δ)δx) one of its canonical forms. The set of components of δ is
{δ0}∪{δx}x∈fn(δ).

E.1 Time graphs
To make dependencies between constraints explicit when checking feasibility and wait-
freedom, we create a representation of global timed types as time graphs.

Let G be a timed global type, a subterm G′ of G, written G′ ∈ G, is a timed global
type that appears in G. To build the time graph of G we first annotate each G′ ∈ G with
a distinguished name, ranged over by n. The nodes n of a timed graph are of the form
(n, i, !) for output action in branch i of an interaction type, (n, i,?) for input action in
branch i, (n,µt) for recursive type, (n, t) for type variable and the special node end. We
build the set of nodes from an annotated timed global type as follows:

nodes(n : p→ q : {li〈SI〉{Ai}.Gi}i∈I) = {(n, i,#) | i ∈ I, # ∈ {!,?}} ∪⋃
i∈I nodes(Gi)

nodes(n : µt.G′) = {(n,µt)}∪nodes(G′)
nodes(t) = {(n, t)}
nodes(n : end) = {end}

The set of nodes deriving from G but not from the subterms of G, written t nodes(G),
is defined as nodes(G)\{n | n ∈ nodes(G′) and G′ ∈G}. Vice-versa, we use the func-
tion termG(n) to return the subterm of annotated type G corresponding to node n. We
will use the following auxiliary functions that can be defined straightforwardly from
termG(n). Let n ∈ nodes(G) and

termG(n) = p→ q : {li〈Si〉{δOi,λOi,δIi,λIi}.Gi}i∈I

then:

– subj(n) returns the participant that is performing the action associated to n. More
precisely: let n= (n, i,#) then subj(n) = p if # =! and subj(n) = q otherwise.

– const(n) returns: δOi if n= (n, i, !), and δIi if n= (n, i,?).
– resInfo(n) returns: λOi if n= (n, i, !), and λIi if n= (n, i,?).

Function const(n) returns true and all other functions above return /0 if termG(n) is
not an interaction type.
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Definition E.2 (Time graph of a TG) The time graph of G is a pair (N,E) where the
set of nodes N = nodes(G) and E is defined as follows:

– (I/O dependency) for each (n, i, !) and (n, i,?) in N, ((n, i, !),(n, i,?)) ∈ E,
– (single participant dependency) for each pair of nodes n1 = (n, i,#) and n2 =
(n, i′,#′) in N, if termG(n2) ∈ termG(n1), sub j(n1) = sub j(n2) and n 6= n′ then
(n1,n2) ∈ E.

– (syntactic dependency and recursion) for each node n ∈ N:
1. if termG(n) = µt.G′ then (n,t nodes(G′)) ∈ E, and
2. if n= (n, i,#) and termG(n) = p→ q : {l j〈S j〉{δO j,λO j,δI j,λI j}.G j} j∈J then

for all j such that G j ∈ {t,end}, (n,t nodes(G j)) ∈ E.

The edges of the time graph of G define an immediate successor relation (i.e.,
(n,n′) ∈ N) between nodes written n <G n′. We refer to path in the time graph as
n0 <G . . . <G nm or more concisely n0, . . . ,nm. We say that a path n0, . . . ,nm has postfix
ni, . . . ,nm for 0 < i < m. A path from n to n′ is a path of the form n, . . . ,n′. We write
n, p for the path obtained by appending path p to n. Similarly, we write p,n for the path
obtained appending node n to p. We write p\ p′ for the path obtained by removing from
p all the nodes in p′ (assuming node names unique within a path).

E.2 Virtual time

To reason on the properties of a G the checker will use extended constraints that allow to
compare clocks. Clock comparison is used to compose different constraints occurring
in G. The aim is to determine the possible times in which an action in G can happen on
the basis of the constraints that occur earlier of that action in G.

Definition E.3 (Extended clock constraints) The set of extended clock constraints δ

on X is:
δ ::= true | x > e | x = e | ¬δ | δ1∧δ2 |
e ::= x | c | e+ e

The extension of fc(δ) to constraints on multiple clocks is straightforward. Hereafter
we implicitly assume constraints are extended constraints.

To check satisfiability of a constraint we model, given the time graph of a G, the time
scenario in which node n can be reached in an execution of G. We call this scenario
virtual time of n, written δn. This virtual time is calculated by considering that the
current instant in time must not precede the the time of past actions. The time of past
actions is determined considering the past constraints (as reset may have occurred, the
virtual time must be appropriately shifted forward w.r.t. to constraints referring to reset
clocks). We will use the following notation: assume participant p owns j clocks ( j ∈N),
we denote with xp j the j− th clocks owned by p, with xnp j the state of the j− th clocks
owned by p in node n, with #»xp the vector of all clocks owned by p, and with

#»
xnp the

vector of all clock states of clocks owned by p in n.
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Definition E.4 The sum of δ with a clock x, written δ+ x is defined as follows:

true+ x = true

(x′ bop e)+ x =

{
x′ bop (e+ x) ( f (x,x′) = true)

x′ bop e ( f (x,x′) = false)
with (bop ∈ {∧,∨,=})

(¬δ)+ x = ¬(δ+ x)

with f (xnp j,x
n′
p′ j′) =

{
true (p= p′, j = j′)
false (otherwise)

The sum of δ with a vector of clocks is δ+ #»x = (δ+ x0)+
#»x ′ with #»x = x0 +

#»x ′.

To calculate the virtual time in n, δn, we use a function R that takes a node and a
participant and returns the sum of clock states in which this participant has reset the
clock. Let us set default initial values to recursively calculate the time scenario of a
node: δ0 = true and R(n0,p, j) = 0 for all p ∈ P (G) with j ∈ X(p,G) (recall from
§ 3 that X(p,G) is the set of clocks owned by p in G). Let n be a node in the time
graph of the all-unfolding of G, const(n) = δ, and M = {n′ | n′ ∈ N and n′ <G n}. We
denote with {δ /0}∪{δ j} j∈J the components of δ (see Definition E.1) where, abusing the
notation, we let fn(δ j) = {xp j} for each j ∈ J (if subj(n) = /0 then δ = δ /0).

Definition E.5 (Virtual time)

δn = ∧n′∈Mδn′(
#»x )∧δ /0∧

∧
j∈J((δ j[xnp j/xp j]+R(n′,p, j))∧ ( #»x ≤ xnp j))

R(n,p, j) =

{
∑n′∈M R(n′,p, j)+ xnp j if resInfo(n) = {xp j}
∑n′∈M R(n′,p, j) otherwise

E.3 Algorithms for checking feasibility and wait-freedom

Feasibility. Feasibility of G requires the satisfiability of each constraint in G, in every
possible scenario that satisfies the previously occurred constraints. We also need to take
care that each constraint occurring in the body of a recursive global timed type can be
satisfied when the body is executed infinitely many times.

For recursion we must consider that the action associated to each node n in a re-
cursion body can be executed in two different scenarios: (1) in the first iteration, (2) in
successive iterations. In (2) we must consider that the time scenario in successive itera-
tions is affected by time constraints occurring syntactically after n in the recursion body.
To account for this, we check feasibility on the one-time unfolding of all the recursions
in a TG. We will show the conditions by which one unfolding is sufficient to guarantee
that n will be also satisfiable in successive unfoldings (hence iteration instances).

Step 1 : all-unfolding. The first step for checking feasibility of G is to make the one-
time unfolding of all recursions in G.

Step 2 : the time graph. A time graph is generated on the all-unfolding of G.
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Step 3 : the dependency constraints We define for each node of the time graph of
G a dependency constraint that models the possible time scenarios in which the action
associated to that node is executed (i.e., the virtual time δn in Definition E.5).

Definition E.6 (Dependency constraint and reset) Let n be a node in G and M =
{n′ | n′ ∈ N and n′ <G n}. The dependency constraint of n is defined as follows:

δn = ∧n′∈Mδn′

The dependency reset of n is defined as follows:

R(n,p, j) = ∑
n′∈M

R(n′,p, j)

Step 4 : checking satisfiability of time graph We define time graph satisfiability (Def-
inition E.8) in terms of node satisfiability (Definition E.7).

Definition E.7 (Satisfiable node) Let n be a node of the (all-unfolding) time graph of
G, and const(n) = δ. If subj(n) = p and fn(δ) 6= /0 we denote with {δ0}∪{δ j} j∈J the
components of δ (see Definition E.1) where, abusing the notation, we let fn(δ j) = {xp j}
for each j ∈ J (if subj(n) = /0 then δ = δ /0). Node n is satisfiable if δ /0 is not logically
equivalent to false and

δn(
#»x )⊃

∧
j∈J

(∃xp j.(δ j(xp j)+R(n,p, j))∧ ( #»x ≤ xp j))

Definition E.8 (Satisfiable time graph) The time graph of G is satisfiable if

1. all nodes n that are not of the form (n, i, !) are satisfiable, and
2. for all (n, i, !) (with termG(n, j, !) = p→ q : {li〈SI〉{Ai}.Gi}i∈I) there exists j ∈ I

and node (n, j, !) in the graph tree of G that is satisfiable and such that end ∈ G j.

Condition (2) ensures that, in case of branching, at least one branch is satisfiable, and
that there is always at least one satisfiable path to end. Recall that in § 3 we assume there
is always a path to end, here we state that this path is allowed by the time constraints.
Note that j can be equal to i. Also note that if a branch i cannot be taken then the node
associated with the receive/branching (n, i,?) is trivially satisfiable as its node constraint
is false.

Step 5 : checking for infinite satisfiability of nodes in recursion bodies Although in
the paper we assume infinite satisfiability, we give a hints on how to algorithmically
check infinite satisfiability (see Definition B.7) on a tree graph.

We consider all paths p = nodes(G′), . . . , t such that µt.G′ ∈G. Let p = n, p′ be one
of such paths and termG(n) = G′, then either of the following conditions must hold:

1. for all n′ ∈ p, resInfo(n′) = /0 and ¬B(const(n′)),
2. for all p ∈ P (G′) there exists n′ ∈ p such that subj(n′) = p and resInfo(n′) 6= /0

Recall B(δ) is from Definition B.6.
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Summary Definition E.9 summarises the steps performed by the checker.

Definition E.9 (Feasibility checker) To check for feasibility of a G: (1-2) generates
the time graph for the all-unfolding of G, (3) annotates the nodes of the graph with
their dependency constraints and resets, (4) checks that the time graph is satisfiable,
and (5) checks that all recursions in G are infinitely satisfiable. We write `F G if G
satisfies the checker.

Wait-freedom. Wait-freedom can be checked following a similar approach as for Feasi-
bility (steps 1,2,3,4,5) but substituting Definition E.7 (satisfiable node) with Definition
E.10 (wait-free node).

Definition E.10 (Wait-free node) A node n such that subj(n) = /0 or fn(const(n)) = /0

is always wait-free. Let n! =(n, i, !) and n? =(n, i,?) be nodes of the (all-unfolding) time
graph of G with subj(n?) = p, const(n?) = δ. If fn(δ) 6= /0 then we let {δ /0}∪{δ j} j∈J
be the components of δ. We say that n? is wait-free

δn?(
#»x )

∧
j∈J((δ j(xp j)+R(n?,p, j))⊃ ( #»x ≤ xp j))

E.4 Auxiliary lemmas (properties of clock constraints in recursive TGs)
Let G = µt.G′ be a recursive TG. We denote with Gi the i−th all-unfolding of G.
The main lemma of this section is Lemma E.14, showing that if the constraint in all
nodes in Gi are satisfiable then also those of Gi+1 are, assuming G infinitely satisfiable.
Lemma E.14 relies on two auxiliary results: (1) Lemma E.11 states that satisfiability of
a node is preserved when a recursion has no reset and no bad constraints, (2) Lemma
E.12 will be used for loops where each participant resets at each cycle.

Let #»x = x1, . . . ,xn and #»x ′ = x′1, . . . ,x
′
n be vectors of clocks having the same number

n of clocks. We denote (x1 ≤ x′1)∧ . . .∧ (xn ≤ x′n) by #»x ≤ #»x ′. When relating a vector
with a single clock x we denote (x1 ≤ x)∧ . . .∧ (xn ≤ x) by #»x ≤ x.

Lemma E.11 Assume ¬B(δn) and ¬B(δ) (Definition B.6). Then

δn(
#»x )⊃ ∃x.δ(x)∧ #»x ≤ x (46)

implies
δn∧δn[

#»x ′/ #»x ]∧ #»x ≤ #»x ′ ⊃ ∃x.δ(x)∧ #»x #»x ′ ≤ x (47)

Proof. Since #»x are universally quantified in (46) then time can be shifted forward in
(47) while preserving the satisfiability of δ. The fact that time can be shifted forward
preserving satisfiability is straightforward by induction on the structure of clock con-
straints under the assumption that ¬B(δn) and ¬B(δ).

Lemma E.12 Assume ¬B(δn) and ¬B(δ). Then

δn(
#»x )⊃ ∃x.δ(x)∧ #»x ≤ x

implies
δn(

#»x )⊃ ∃x.δ(x)+R∧ #»x ≤ x
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Proof. Intuitively, the solution of δ+R is still greater to or equal than #»x since time is
shifted forward. Again we can proceed mechanically by induction on the structure of
clock constraints.

Lemma E.13 If n<G n′ then for all p ∈ P (G), R(n,p)≤ R(n,p).

Lemma E.14 Let G = µt.G′ be a TG, and assume all the nodes of G are infinitely
satisfiable. For all i ∈ N, if `F Gi then `F Gi+1.

Proof By Remark E.2 we assume, without loss of generality, that p owns at most one
clock. Namely we simplify

δn(
#»x )⊃ δ0∧

∧
j∈J

(∃xp j.(δ j(xp j)+R(n,p, j))∧ ( #»x ≤ xp j))

with
δn(

#»x )⊃ ∃x.(δ(x)+R(n,p,1))∧ ( #»x ≤ x))

Let ni be a node in the i-th all-unfolding of G, δni(
#»x ) be its dependency constrains

and δ = const(n). If fn(δ) = /0 the thesis follows immediately by the fact that the
validity of δ is not influenced by the state or previous constraints. We therefore assume
fn(δ) = {x}. Let ni+1 be the node that corresponds to ni in the i+1-th all-unfolding of
G, and observe that const(ni+1) = const(n) = δ. We distinguish two main cases: (1)
there are no resets in the loop and there are no bad constraints, and (2) all participants
reset in G′. If (1) then `F G

δni(
#»x )⊃ ∃x.δ(x)∧ #»x ≤ x (48)

By Lemma E.11 on (48) we obtain

δni ∧δni [
#»x ′/ #»x ]∧ #»x ≤ #»x ′ ⊃ ∃x.δ(x)∧ #»x #»x ′ ≤ x (49)

By (49) and observing that δni+1 = δni ∧δni [
#»x ′/ #»x ]∧ #»x ≤ #»x ′ we obtain that δ is satisfi-

able in the corresponding node of the i+1-th all-unfolding.
If (2) since there are resets then for every node ni in the i-th occurrence of the

recursion by unfolding, and const(ni) is satisfiable then, as the same scenario will
repeat identically in loop i+1, const(ni+1) is also satisfiable. We first observe δni+1 =
δni ∧ δ′ (δ is the logical conjunction of all the single constraints δni with, added, the
corresponding resets). Also observe that (as standard for logical conjunction)

δni(
#»x )∧δ

′( #»x ′)∧ #»x ≤ #»x ′ ⊃ δni (50)

Let p= subj(ni), by satisfiability of node ni

δni(
#»x )⊃ ∃δ(x)+R(ni,p)∧ #»x ≤ x (51)

By Lemma E.12 on (51)

δni(
#»x )⊃ ∃δ(x)+R(ni,p)+R′∧ #»x ≤ x (52)

We set R′ = R(ni+1,p)−R(ni,p) (note that R′ ≥ 0 as R is non decreasing by Lemma
(E.13). The result follows by (50), (52) and transitivity of the logical implication ob-
serving that δni+1 = δni(

#»x )∧δ′( #»x ′)∧ #»x ≤ #»x ′.
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E.5 Auxiliary lemmas (feasibility)
Definition E.15 will be convenient, in the proofs, to make it clear what is the global
time elapsed since the beginning of the protocol.

Definition E.15 (Annotated executions) The annotated execution from G0 to Gn is de-

fined as (ν0,G0)
`1,t1−−→ (ν1,G1)

`2,t2−−→ . . .
`n,tn−−→ (νn,Gn) such that:

1. ν0(x) = 0 ∀x ∈ dom(ν0),

2. (νi,Gi)
`i,ti−−→ (νi+1,Gi+1) if (νi,Gi)

`i−→ (νi+1,Gi+1) by the transitions in Figure 1,
3. t0 = 0, ti = ti−1 + t if `i = t for some t ∈ R≥0, and ti = ti−1 otherwise.

Lemma E.16 Let G0 be a TG such that `F G0, (ν0,G0) −→∗ (ν,G) and G 6= end. If
ν |=∗ rdy(G) then (using the annotated executions from Definition E.15)

1. (ν,G)−→∗ (`, ti)−−−→ (ν′,G′) and
2. ν′ |=∗ rdy(G′).

Proof. By Remark E.2, without loss of generality we assume that p owns at most one
clock.

Let ni be a node in the i-th all-unfolding of G, δni(
#»x ) be its dependency constrains

and δ = const(n). If fn(δ) = /0 the thesis follows immediately by the fact that the
validity of δ is not influenced by the state or previous constraints. We therefore assume
fn(δ) = {x}. Let ni+1 be the node that corresponds to ni in the i+1-th all-unfolding of
G, and observe that const(ni+1) = const(n) = δ.

We proceed by case analysis on the structure of G.
Case G = p→ q : {l j〈S j〉{A j}.G j} j∈J with A j = {δO j,λO j,δI j,λI j}. Since ν |=∗

rdy(G) then there exist t ≥ 0 and k ∈ J such that ν+ t |= δOk hence

(ν,G)
(t, ti−t)−−−−→ (pq!lk〈Sk〉, ti)−−−−−−−→ (ν′,G′)

with G′ = p q : lk〈Sk〉{Ak}.Gk and ν′ = [λOk 7→ 0]ν+ t. Observe that

rdy(p q : lk〈Sk〉{Ak}.Gk) = rdy(G)∪δIk ∪{δi}i∈I \{δO j} j∈J

where {δi}i∈I is the set of clock constraints associated to the next action (if any) of p.
The constraints in rdy(G) remain satisfiable in ν′ by definition of ν |=∗ rdy(G). We
have to prove, instead, that δIk and {δi}i∈I are satisfiable after some non-negative t ′ in
ν′. As to {δi}i∈I , if p 6∈ P (G′), namely there is no edge (nodes(G′),n) in the time graph
of G0 such that subj(n) = p, then there is no next ready action for p and no δi is added
to rdy(G′) (i.e., I = /0) hence done. If p ∈ P (G′) then there exists a next node n such
that subj(n) = p and const(n) = δ(xp). By `F G0 we have

δn(
#»x )⊃ ∃xp.(δ(xp)+R(n,p))∧ ( #»x ≤ xp) (53)

with R(n,p) being clocks of the predicates in δn(
#»x ) associated to actions in which p

has reset.
By (53) we know that all steps caused by actions that causally/temporally precede

the last action to (ν′,G′) precede some of the solutions of (53) for xp. Therefore by (53)
there exists a solution tp for (53). We have two cases:
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1. tp− ti < 0. In this case the delays introduced by all causally/temporally preceding
actions (i.e., those actions whose states are nodes in the path to G′ in the time
graph of G0) have been included in δn. Hence if time elapsed after the solutions of
(53) (hence tp− ti < 0) it is because of some steps that are not causally/temporally
related with the last action to (ν′,G′). In this case timed has elapsed by bTIMEc, by
the premise of rule bTIMEc (i.e., δ(xp) is satisfiable after that time step) we obtain
the thesis.

2. tp− ti ≥ 0. In this case observe that by (53) tp−R(n,p) is a solution of δ(xp). Since
R(n,p) is the lower bound of the resets occurred for p then

ν
′(xp)≤ ti−R(n,p) (54)

By hypothesis for this case tp ≥ ti which applied to (54) yields

ν
′(xp)≤ tp−R(n,p)

that is, the solution tp−R(n,p) of δ does not precede the current clock assignment
ν′(xp) for p. Hence δ is satisfiable after some non-negative delay in ν′.

The case for δIk(xq) and those for branching process are similar.
The case for G = µt.G′ follows by Lemma E.14 under assumption `F G0.

Lemma E.17 Let G0 be infinitely satisfiable and `F G0 then (ν0,G0) −→∗ (ν,G) im-
plies (ν,G)−→ (ν′,end).

Proof We reason by induction on the complexity of G that can be calculated with the
following function:

complexity(p→ q : {l j : {A j}.G j} j∈J) = 1+max(complexity(G j))
complexity(p q : {l j : 〈A j〉{G j}. j ∈ J}) = 0.5+max(complexity(G j))
complexity(µt.G′) = complexity(G′)
complexity(t) = complexity(end) = 0

We observe that (1) the only steps that do not decrease the complexity are bTIMEc, bENDc
and bRECc, (2) by Lemma E.16 after some bTIMEc steps a visible step is always possible,
which decrease the complexity. Since the complexity is always non negative, some step
bENDc or bRECc will eventually occur. If bENDc occurs then we are done. If bRECc occurs
then fix one of the annotated executions of G0 and consider the following set of pairs of
states of that execution:

Rset = {(νi,Gi),(νi+1,Gi+1) | (νi,Gi)
(`,t)−−→ (νi+1,Gi+1) and

complexity(Gi)< complexity(Gi+1)}

By assumption on recursive timed global types in § 3 there is at least one end in each
recursion. By infinite satisfiability of G (straightforward by infinite satisfiability of G0)
and by condition (2) of Definition E.8 in each iteration there is a reachable path to end

satisfying the constraints. By Remark E.3 this path to end will eventually be taken,
hence Rset is finite. Let (νi,Gi),(νi+1,Gi+1) be the pair of states that occur later than all
the other couples of states in Rset . From (νi,Gi) and (νi+1,Gi+1), since the complexity
is decreasing and bRECc will no longer occur, we have that bENDc will eventually occur.
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E.6 Auxiliary lemmas (wait-freedom)
In this section we rely on the annotated traces in Definition E.15.

Lemma E.18 If (ν0,G0)−→∗
(`, t)−−−→ (ν,G) then δn(

#»x )⊃ #»x ≤ t.

The proof of Lemma E.18 is mechanical by induction on the transitions. It states that
the set of solutions of a node constraint includes the solutions of all possible executions
until the state corresponding to that node, hence it includes also the one with larger
delays (if any) which is certainly greater than or equal to the delay t of the execution
we are taking into account.

Lemma E.19 Let G0 be a TG such that `W G0 and, using annotated executions in

Definition E.15, (ν0,G0)−→∗ (ν′,G′)
(pq!`〈S〉, t)−−−−−−→ (ν,G) with

– p→ q : {l j〈S j〉{δO j,λO j,δI j,λI j}.G j} j∈I ∈ G′ and
– p q : li〈Si〉{δOi,λOi,δIi,λIi}.G′i ∈ G (i ∈ I).

Then δIi(
#»x )⊃ ν( #»x )≤ #»x .

Proof. By Remark E.2, without loss of generality we assume that δIi has at most one
clock. The statement δIi(

#»x )⊃ ν( #»x )≤ #»x becomes:

δIi(x)⊃ ν(x)≤ x

If fn(δI) = /0 the thesis follows immediately. We proceed assuming fn(δIi) = {x}. The
constraint δOi is satisfied by the clock assignment ν′ since an output step pq!`〈S〉 is
made from (ν′,G′). Let n′ is the node in the time graph of G0 corresponding to the
receive of branch i in G, by `W G0 we have

δn′(
#»x )∧ (δIi(x)+R(n′,q))⊃ ( #»x ≤ x) (55)

By Lemma E.18 on (55) we have

(δIi(x)+R)⊃ (t ≤ x) (56)

for R = t−ν(x) (the reset is difference between the absolute time from the beginning t
and the current clock assignment). By Definition E.4 (56) is equivalent to

δIi(x)⊃ ν(x)≤ x

as required.

E.7 Proof of Proposition 5.1
Proposition 5.1 follows immediately from Lemma E.17 and Lemma E.19.

F Time Progress - definitions and proofs
This appendix includes: (§ F.1) auxiliary definitions and lemmas for time progress, and
(§ F.2) the proof of Theorem 5.4 (time progress).
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F.1 Auxiliary definitions and lemmas
Definition F.1 (Time erasure) The erasure erase(P) of time from a process P is de-
fined inductively as follows:

erase(u[n](y).P) = u[n](y).erase(P)
erase(u[i](y).P) = u[i](c).erase(P)
erase(c[p]/ l〈e〉;P) = c[p]/ l〈e〉;erase(P)
erase(c[p].{li(zi).Pi}i∈I) = c[p].{li(zi).erase(Pi)}i∈I
erase(c[p]/ 〈〈c′〉〉;P) = c[p]/ 〈〈c′〉〉;erase(P)
erase(c[p]. ((y)).P) = c[p]. ((y)).erase(P)
erase(delay(t).P) = erase(P)
erase(if e then P else Q) = if e then erase(P) else erase(Q)
erase(P | Q) = erase(P) | erase(Q)
erase(0) = 0
erase((νn)P) = (νn)erase(P)
erase(µX .P) = µX .erase(P)
erase(X) = X
erase(s : h) = s : h

Definition F.2 (Deferrability) A process P is deferrable iff one of the following holds:

P = delay(t).P′ and t > 0
P = delay(t).P′, t = 0 and P′ is deferrable
P = Q1 | Q2 and both Q1 and Q2 are deferrable
P ∈ {0, t}
P = s : h
P = (νn)P′ and P′ is deferrable
P = µX .P′ and P′ is deferrable

Intuitively, a process is non deferrable if no action ready to execute in any of its threads
is a time action. We say that P is non deferrable if P is not deferrable.

Lemma F.3 If erase(P)−→ then erase(P) is of one of the following forms:

1. a[n](y).P1 |∏i∈{2,...,n} a[i](y).Pi
2. s[p][q]/ l〈e〉;P | s : h
3. s[p][q].{li(zi).Pi}i∈I | s : (p,q, l j〈S j〉) ·h ( j ∈ I)
4. s[p][q]/ 〈〈s′[p′]〉〉;P | s : h
5. s[p][q]. ((z)).P | s : (p,q,s′[p′]) ·h
6. if e then P else Q
7. P | Q with P and Q non deferrable
8. (νn)P

Lemma F.4 1. if erase(P) = a[n](y).P1 | ∏i∈{2,...,n} a[i](y).Pi then ∃P′1, . . . ,P′n, t1 ≥
0, . . . , tn≥ 0 s.t. P≡ delay(t1).a[n](y).P′1 |∏i∈{2,...,n} delay(ti).a[i](y).P′i and Pi =
erase(P′i ) for all i ∈ 1, . . . ,n.

2. if erase(P) = s[p][q] / l〈e〉;P1 | s : h then ∃P′1, t ≥ 0 s.t. P ≡ delay(t).s[p][q] /
l〈e〉;P′1 | s : h and P1 = erase(P′1).
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3. if erase(P) = s[p][q].{li(zi).Pi}i∈I | s : (p,q, l j〈v〉) ·h ( j ∈ I) then ∃P′i , t ≥ 0 for
i ∈ I s.t. P ≡ delay(t).s[p][q] . {li(zi).P′i}i∈I | s : (p,q, l j〈v〉) and Pi = erase(P′i )
for all i ∈ I.

4. if erase(P) = s[p][q]/ 〈〈s′[p′]〉〉;P1 | s : h then ∃P′1, t ≥ 0 s.t. P≡ delay(t).s[p][q]/
〈〈s′[p′]〉〉;P′1 | s : h and P1 = erase(P′1).

5. if erase(P)= s[p][q].((z)).P1 | s : (p,q,s′[p′])·h then ∃P′1, t ≥ 0 s.t. P≡ delay(t).s[p][q].
((z)).P′1 | s : (p,q,s′[p′]) ·h and P1 = erase(P′1).

6. if erase(P) = if e then P1 else P2 then ∃P′1,P′2, t ≥ 0 s.t.
P≡ delay(t).if e then P′1 else P′2 and Pi = erase(P′i ) for i ∈ {1,2}.

7. if erase(P)=P1 |P2 then ∃P′1,P′2, t1≥ 0, t2≥ 0 s.t. P≡ delay(t1).P′1 | delay(t2).P′2
with Pi ≡ erase(P′i ) and P′i non deferrable for i ∈ {1,2}.

8. if erase(P) = (νn)P′ then ∃P′′, t≥0 s.t. P≡ delay(t).(ν)P′′ and erase(P′′) = P′.

In case (7) of Lemma F.4 observe that we can always find non deferrable (Definition F.2)
continuations P′1 and P′2 as we can collect the delays in front of the process by structural
equivalence rule delay(t).delay(t ′).Pi ≡ delay(t + t ′).Pi.

Lemma F.5 If P is non deferrable and erase(P)−→P′ then P−→P′′ and erase(P′′)=
P′

Proof. Mechanical, by induction on the derivation of erase(P), proceeding by case
analysis using Lemma F.3 and Lemma F.4.

Lemma F.6 (Time progress - parallelism and interleaved sessions) Let Γ be a feasi-
ble and wait free mapping, Γ ` P0 . /0, and P0 −→+ P where P is session delay and

P≡ delay(t).P | R for some t > 0 and non deferrable R

If erase(P) is not a deadlock process and erase(P)−→ then R−→.

Proof. Without loss of generality we assume that for some L

R = R′ |∏
l∈L

sl : hl

We proceed by induction on the complexity of R′, proceeding by case analysis on the
possible form of process R′.

The complex cases are those for receive and session receive, (i.e., R′ is stuck waiting
for messages). In all other cases one can immediately show that R′ reduces. In fact,

– R′ cannot be a of the form u[n](y).R′′ or u[i](y).R′′ since (1) erase(P) is deadlock
free hence all the other corresponding session requests or accepts to start session
y are in P, and (2) P is session delay hence none of the corresponding session
accepts/delay can be in Pi.

– R′ cannot be a delay process as P it is non deferrable (Definition F.2) by hypothesis,
– if R′ is of the form s[p][q]/ l〈e〉;R′′ or s[p][q]/ 〈〈c′〉〉;R′′ then one can immediately

show that R can reduce by bSELc or bSRECc.
– in the inductive cases (e.g., for hiding and parallel processes) the result follows by

induction.

We will show the case for R′ being an input process. The case for session receive is
similar hence omitted.
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Case R′ ≡ s[p][q].{lk(zk).Rk}k∈I . In this case:

R≡ s[p][q].{lk(zk).Rk}k∈I |∏
l∈L

sl : hl

We proceed by contradiction assuming Γ feasible and wait-free, erase(P) deadlock
free, erase(P) −→ and R 6−→. If R 6−→ we have the following cases depending on
where the corresponding output of s[p][q].{lk(zk).Rk}k∈I is:

1. the corresponding output appears (immediately or after some other input) in some
continuation Rk,

2. the corresponding output appears in Pi for some i ∈ I
3. the corresponding output does not appear.

If (1) or (3) then we contradict that erase(P) is deadlock free. If (2) then we contradict
the fact P0 was validated against a feasible and wait-free Γ in fact: feasibility ensures
that there exists at least one execution of the types of sessions of si where a selec-
tion/delegate happens before or at the same time of the corresponding receive/session
receive, and by wait-freedom since in one execution the output does not precede the
input then in all correct implementations the output does not precede the input, hence
the output for a non deferrable (Definition F.2) input does not occur after ti > 0 time
which contradicts fact that the output appears in Pi.

F.2 Proof of Theorem 5.4 (time progress)
We prove Theorem 5.4 by induction on the proof of P, proceeding by case analysis on
the possible forms of P according to Lemma F.3.

Case Lemma F.3 (1): Since we assume that P is session delay then this case can
only occur if P = erase(P), hence the thesis follows immediately by the hypothesis.

Cases Lemma F.3 (2), (3), (4), and (5) proceed similarly. We show the case for
Lemma F.3 (3): erase(P) = s[p][q] . {li(zi).Pi}i∈I | s : (p,q, l j〈S j〉) · h ( j ∈ I). By
Lemma F.4 (3)

P≡ delay(t).erase(P)[P′i/Pi] | s : (p,q, l j〈S j〉) ·h ( j ∈ I) (57)

By two reductions by rule bSTRc with premises by rules bTIMEc and then bBRAc on (57)

P−→ erase(P)[P′i/Pi] | s : (p,q, l j〈S j〉) ·h−→ Pj | s : h (58)

and by reduction rule bBRAc on erase(P)

erase(P)−→ erase(Pj) | s : h (59)

Finally, by (58) and (59), since

erase(Pj) | s : h = erase(Pj | s : h)

we have the thesis for this case.
Case Lemma F.3 (6): immediate considering that e ↓ true in both P and erase(P)

(the erasure does not affect the conditions of conditional statements as such conditions
do not involve delays).
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Case Lemma F.3 (7): erase(P) = P1 | P2 and erase(P) −→ P′1 | P2. By reduction
rule bCOMc

P1 −→ P′1 (60)

By Lemma F.4 (7)
P≡ delay(t1).Q1 | delay(t2).Q2

erase(Qi) = Pi, i ∈ {1,2} (61)

and
Qi non deferrable, i ∈ {1,2} (62)

If t1 = t2 then delay(t1).Q1 | delay(t2).Q2 −→ Q1 | Q2 by a bTIMEc reduction. By
(61), (62) and (60) Q1 −→ hence by bCOMc

Q1 | Q2 −→ Q′1 | Q2

hence done.
If t1 6= t2, assume without loss of generality that t1 > t2. After a bTIMEc reduction

delay(t1).Q1 | delay(t2).Q2 −→ delay(t1− t2).Q1 | Q2

with Q2 non deferrable. This case holds by Lemma F.6
Case Lemma F.3 (8): immediate by induction.

G CTAs - encoding, characterisation and properties
This appendix includes: (§ G.1) the LTS for CTAs, (§ G.2) the encoding from timed
(global/local) types to CTAs, (§ G.3) the formal definition of multiparty compatibility
for CTAs, (§ G.4) auxiliary definitions and lemmas on the encoding, and (§ G.6) the
proof of Theorem 5.7 (progress).

G.1 Labelled transitions for CTAs
For the reader’s convenience we report the definition of LTS for CTAs from [14] (we
ignore the ε actions in [14] as they are not present in CTA encoded from TGs).

The labelled transitions for CTAs is defined on labels L (i.e., the labels used by
timed types). The semantics of (A1, . . . ,An,

#»w), following [14], is a LTS with states of
the form ((q1,ν1), . . . ,(qn,νn),

#»w). The initial state is ((q1
0,ν

1
0), . . . ,(q

n
0,ν

n
0),

#»
ε ) where

qi
0 is the initial state of Ai.

Let s = ((q1,ν1), . . . ,(qn,νn),
#»w) and s′ = ((q′1,ν

′
1), . . . ,(q

′
n,ν
′
n),

#»w ′), the transitions
are defined as follows:

– s
pq!l〈S〉−−−−→ s′ if (qp,q′p,pq!l〈S〉,λ,δ) ∈ E, and (i) wpq = l〈S〉 ·w′pq, δ[νp] ↓ true, ν′p =

νp[λ 7→ 0], (ii) qr = q′r, νr = ν′r for all r 6= p ∈ {1, ..,n}, and wrk = w′rk for all
rk 6= pq.

– s
pq?l〈S〉−−−−→ s′ if (qq,q′q,pq?l〈S〉,λ,δ) ∈ E, and (i) wqp · l〈S〉 = w′pq, δ[νq] ↓ true ,

ν′q = νq[λ 7→ 0], (ii) qr = q′r, νr = ν′r for all r 6= q ∈ {1, ..,n}, and wrk = w′rk for all
rk 6= pq.

– s t−→ s′ if ν′p = νp+ t, qp = q′p and wpq = w′pq for all p,q 6= p ∈ {1, ..,n}.
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G.2 The encoding

We first define an encoding from single projections of TG into timed automata. The en-
coding of T0 into a timed automaton, written A(T0), is (Q,T0,I ×S ,{xp},E,F) where:
Q = {T ′ | T ′ ∈ T0,T ′ 6= t,T ′ 6= µt.T}; q0 = T0 with T0 = µt.T ′ and T ′ ∈Q; E is defined
as follows, for all T ∈ Q:

If T = q⊕{li : 〈Si〉{δi,λi}.Ti}i∈I then{
(T,Ti,(pq!li〈Si〉),λi,δi) ∈ E Ti 6= t
(T,T ′,(pq!li〈Si〉),λi,δi) ∈ E Ti = t, µt #»t .T ′ ∈ T0,T ′ ∈ Q

If T = q&{li : 〈Si〉{δi,λi}.Ti}i∈IQ then{
(T,Ti,(pq?li〈Si〉),λi,δi) ∈ E Ti 6= t
(T,T ′,(pq?li〈Si〉),λi,δi) ∈ E Ti = t, µt #»t .T ′ ∈ T0,T ′ ∈ Q

and the set of final states is F = {end}. The definition says that the set of states Q are
the subterms of branching, selection or end in T0; the initial state q0 is the occurrence
of (the recursion body of) T0; the channels correspond to those in T0; and the transition
is defined from the state T to continuation Ti with the action pq!li〈Si〉 for the output and
pq?li〈Si〉 for the input and with the clock constraint and reset predicate of that branch.
If Ti is a recursive type variable t, it points the state of the body of the corresponding
recursive type.

The figure below illustrates timed automaton AM that is the encoding of the master
role of the three party protocol for distributed computation where the set of final states
is F = {end}.

MW!<task> WM?<data>
xM = 0   
xM := 0

xM =2l+w
MW!END

MW!MORE<task>

MA!END<data>
xM =2l+w

xM =2l+w

xM =2l+w
xM := 0

xM =2l+w
xM := 0

TM TM1 TM2 TM4

TM3 END

MA!MORE<data>

The encoding of a set of local timed types {Ti}i∈I into a network of CTAs, written
A({Ti}i∈I), is the tuple (A(T1), . . . ,A(Tn),

#»
ε ).

G.3 Multiparty compatibile CTAs

We extend the definition of multiparty compatibility for communicating automata given
in [11, Definition 4.2] to CTAs.

We say that a state s is n-bounded reachable if it is reachable from the initial state
s0 and if in each intermediary state from s0 to s the size of each buffer contains no more
than n messages.

We let transitions in E to range over e, e′, . . ., and given a transition e= (q,q′, `,λ,δ)
we denote label ` by act(e). An alternation φ is a (possibly empty) sequence of tran-
sitions such that their labels are an alternation of sending and corresponding receive
actions (i.e., actions of the form pq!l〈S〉 immediately followed by pq?l〈S〉).
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Definition G.1 (Multiparty Compatibility) A CTA C =(A1, . . . ,An,
#»
ε ) (n≥ 2) is mul-

tiparty compatible if for any 1-bounded reachable state s of C :

1. for any output action i j!l〈S〉 from s in Ai (i ∈ {1, ..,n}) there exists a sequence of
transitions φ · e from s in C such that φ is an alternation, i 6∈ act(φ), and act(e) =
i j?l〈S〉; and

2. for any input action ji?l〈S〉 from s in Ai (i ∈ {1, ..,n}) there exists an input action
ji?l′〈S′〉 and a sequence of transitions φ ·e from s in C such that φ is an alternation,
i 6∈ act(φ), and act(e) = i j!l〈S〉

Remark G.1. Multiparty compatibility allows scenarios with unbounded channels e.g.,
in G = µt.p→ q : l〈S〉{A}.t, p can send q an unlimited number of messages before q

receives, hence the channel of q is unbounded. By multiple application of bRECc and
bSELECTc (and bASYNC1c after the first action) we obtain the following execution:

µt.p→ q : l〈S〉{A}.t pq!l〈S〉−−−−→ p q : l〈S〉{A}.G pq!l〈S〉−−−−→
p q : l〈S〉{A}.p q : l〈S〉{A}.G pq!l〈S〉−−−−→ . . .

Remark G.2. Considering 1-bounded executions in Definition G.1 (which leads to a
simpler theory) preserves generality due to a property called stability in [11] and di-
rectly applicable to our scenario. By stability, if C is basic and multiparty compatible,
then for all its reachable states s there exists an execution s −→∗ s′ from s to a stable
state s′, and there exists a 1-bounded execution s0 −→∗ s′ from the initial state s0 of C
to s′. Namely, after an appropriate execution any reachable state can be reached by a
1-bounded execution.

G.4 Auxiliary definitions and lemmas (sound and complete encoding)

A Communicating Automaton (CA) [8] (adapting the syntax of [8] to our scenario
for convenience) is defined as M = (Q,q0,Act,E,F) where Q, q0, Act, E and F are
as for timed automata but there are no clocks and reset predicates. A system of CAs
is a tuple S = (M1, . . . ,Mn,

#»w) with #»w unbound unidirectional channels. We denote by
erase(A) the CFSM obtained from A by removing clocks and reset predicates. We
can denote by erase(C ) the system of CFSMs obtained by pointwise erasure of the
timed automata in C (i.e., (erase(A1), . . . ,erase(An),

#»w)). The basic property and
multiparty compatibility for CAs is defined exactly as for CTAs; the fact that these are
properties on the the structure of the CA and CTA (and do not involve temporal aspects)
directly yields Lemma G.2.

Lemma G.2 C is basic and multiparty compatible if and only if erase(C ) is basic and
multiparty compatible.

Following a similar argument, we can state the following:

Lemma G.3 G is projectable if and only if erase(G) is projectable.
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Let A( )−time denote the encoding from (untimed) local types and systems of CAs
from [?] (Definition 3.5 in [?]). The definition of the encoding in § G, based on the en-
coding in [?] except that it adds to the resulting automata the corresponding annotations
with clock constraints and reset predicates, yields Lemma G.4.

Lemma G.4 erase(A(G)) = A(erase(G))−time.

Lemma G.5 Let G be a (projectable) TG then A(G) is basic and multiparty compati-
ble.

Proof. The projectability of G (by hypothesis) together with Lemma G.3 yields that
erase(G) is projectable, hence we can encode it into a system of CAs A(erase(G))−time.
A(erase(G))−time is basic and multiparty compatible by soundness of the encoding
A( )−time in [?]. By Lemma G.4 A(erase(G))−time = erase(A(G)), which yields that
erase(A(G)) is basic and multiparty compatible. The results follows by Lemma G.2
using the fact that erase(A(G)) is basic multiparty compatible.

Lemma G.6 Let T be a TL, then A(T )≈ T (with specified semantics).

Proof. The proof by induction on the encoding. We first consider T - A(T ).
If T = end then both T and A(T ) produce an empty set of traces.
If T = p⊕{li : 〈Si〉{Bi}.Ti}i∈I then we either have a send action or a time action. In

case of send (ν,T )
pq!lk〈Sk〉−−−−−→ (ν′,T ′) by bLSELc. Hence T = p⊕{li : 〈Si〉{Bi}.Ti}i∈I and

k ∈ I, T ′ = Tk. Let Bk = {δ,λ}; by the definition of encoding

(T,Tk,(pq!lk〈Sk〉),λ,δ) ∈ E (63)

with E being the set of edges of A(T ). We observe that by bLSELc ν |= δ hence (63) can
take place and the clock is updated exactly as ν′ (i.e., ν′ = [λ 7→ 0]ν). The thesis follows
by induction (observing that the next state may be a step back to the beginning of the a
recursion, which is mimicked by the automaton). In case of a time action,

(ν,T ) t−→ (ν+ t,T )

and the encoding can make a corresponding action as the clock constraint correspond
precisely to the constraint of the ready action of T .

If T is a receive type we proceed as in the case for send.
If T is of the form µt.T ′ the thesis directly follows by induction. If T is t then no

step can be made. Note that t is never reached even if in the starting TL it is enclosed
in recursion definition µt.T ′. In this case, in order to make a step, an unfolding must
occur which bring us back to the case µt.T ′ and the corresponding state in the timed
automaton.

We next consider A(T )- T , which is delicate as timed automata can always make
time actions whereas timed local types only make time actions that preserve satisfi-
ability of the ready clock constraints (hence our assumption of a specified semantics
for timed automata). We write q ∼ T if q is the initial state of the timed automaton
generated from T (i.e., A(T )) or from some unfolding (i.e., A(T [µt.T/t]) for some t).
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We proceed by case analysis on the label `. We show the case for `= pq?lk〈Sk〉 and
the case for `= t ′ (the case `= pq!lk〈Sk〉 proceeds similarly and is omitted).

If `= pq?lk〈Sk〉 then

(q,q′,pq?lk〈Sk〉,λk,δk) ∈ E (64)

with E set of transitions of A(T ).

Assume (q,ν)
pq?lk〈Sk〉−−−−−→ (q′,ν′) for some ν, ν′. By LTS

ν |= δk (65)

ν
′ = [λk 7→ 0]ν (66)

By definition of encoding

T = µ
#»t .p&{li : 〈Si〉{δi,λi}.Ti}i∈I

with k ∈ I. We proceed by induction on the step rule, showing the base case (the induc-
tive case by rule bLRECc is immediate). In the base case,

#»t is an empty vector and the
step is for rule bLBRAc. By (65) and rule bLBRAc (LTS for TLs)

(ν,T )
lk〈Sk〉−−−→ (ν′,Tk) (67)

If Tk 6= t then immediately by definition of encoding q′ ∼ Tk. Note that Tk cannot be t
because of the unfolding made by rule bLRECc. More precisely, in this case Tk is equal
to T [µt.T/t] for some T , hence q′ ∼ Tk.

If `= t then since we assume a specified semantics, then:

ν+ t |= rdy(T )

hence
(ν,T ) t−→ (ν+ t,T )

where all qi ∼ T ′ since qi = q′i and Ti = T ′i .

Lemma G.7 If C is a session CTA then there exists G such that C ≈ G.

Proof. By Proposition 3.2 in [?], if M is a basic and multiparty compatible CA then
there exists an untimed global type G such that M ≈G. This results is proven by giving
a terminating algorithm that builds a synthesis that returns, given basic and multiparty
compatible CAs a global type. We use the synthesis algorithm to create a skeleton of TG.
We observe that there is a one-to-one correspondence between the states of erase(C )
and those of the synthesised untimed global type, hence we can annotate each transition
with the corresponding clock constraint and reset predicate. Note that by determinism,
there is always one transition from a given a state and label. The proof proceeds sim-
ilarly to Theorem 3.3 where by relying on the structural correspondence between G
and C from [?] it is immediate to show that clocks evolve in a similar way and clock
constraints allow the same timings.
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G.5 Proof of Theorem 5.6 (sound and complete encoding)
Let {Ti}i∈P (G) be the projections of G. By definition (§ 5)

A(G) = ({A(Ti)}i∈P (G),
#»
ε ) (68)

By Lemma G.6 for all i ∈ P (G)
A(Ti)≈ Ti (69)

By (68) and (69) we obtain:

A(G)≈ ({Ti}i∈P (G),
#»
ε ) (70)

Theorem 3.3 and (70) give
A(G)≈ G (71)

Clause (1) follows by Lemma G.5 (A(G) is basic and multiparty compatible) and (71).
Clause (2) follows by Lemma G.7.

G.6 Proof of Theorem 5.7 (progress)
By feasibility of G if (ν,G)→∗ (ν′,G′) implies (ν′,G′)→∗ (ν′′,end). By Theorem 5.6

A(G)≈G hence since G are deterministic (i.e., (ν,G)
`−→ (ν′,G′) and (ν,G)

`−→ (ν′′,G′′)
imply (ν′,G′) = (ν′′,G′′)) then A(G) always reaches a final state (liveness). Since it is
always possible to proceed to a final state it never occurs that C remains stuck in a state
because of an input action (with no output counter-part) and it is always possible to let
time diverge (in final states end time can diverge), which yields progress.
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