15 research outputs found

    A unified model of species abundance, genetic diversity, and functional diversity reveals the mechanisms structuring ecological communities

    Get PDF
    International audienceBiodiversity accumulates hierarchically by means of ecological and evolutionary processes and feedbacks. Within ecological communities drift, dispersal, speciation, and selection operate simultaneously to shape patterns of biodiversity. Reconciling the relative importance of these is hindered by current models and inference methods, which tend to focus on a subset of processes and their resulting predictions. Here we introduce Massive Eco-evolutionary Synthesis Simulations (MESS), a unified mechanistic model of community assembly, rooted in classic island biogeography theory, which makes temporally explicit joint predictions across three biodiversity data axes: i) species richness and abundances; ii) population genetic diversities; and iii) trait variation in a phylogenetic context. Using simulations we demonstrate that each data axis captures information at different timescales, and that integrating these axes enables discriminating among previously unidentifiable community assembly models. MESS is unique in generating predictions of community-scale genetic diversity, and in characterizing joint patterns of genetic diversity, abundance, and trait values. MESS unlocks the full potential for investigation of biodiversity processes using multi-dimensional community data including a genetic component, such as might be produced by contemporary eDNA or metabarcoding studies. We combine MESS with supervised machine learning to fit the parameters of the model to real data and infer processes underlying how biodiversity accumulates, using communities of tropical trees, arthropods, and gastropods as case studies that span a range of data availability scenarios, and spatial and taxonomic scales

    Demonstration of a 32 x 512 Split, 100 km reach, 2 x 32 x 10 Gb/s Hybrid DWDM-TDMA PON using tunable external cavity lasers in the ONUs

    No full text
    We report on a hybrid DWDM-TDMA optical access network that provides a route for integrating access and metro networks into a single all-optical system. The greatest challenge in using DWDM in optical access networks is to precisely align the wavelength of the customer transmitter (Tx) with a DWDM wavelength grid at low cost. Here, this was achieved using novel tunable, external cavity lasers in the optical network units (ONUs) at the customer's end. To further support the upstream link, a 10 Gb/s burst mode receiver (BMRx) was developed and gain-stabilized erbium-doped fiber amplifiers (EDFAs) were used in the network experiments. The experimental results show that 10 Gb/s bit rates can be achieved both in the downstream and upstream (operated in burst mode) direction over a reach of 100 km. Up to 32 x 50 GHz spaced downstream wavelengths and another 32 x 50 GHz spaced upstream wavelengths can be supported. A 512 split per wavelength was achieved: the network is then capable of distributing a symmetric 320 Gb/s capacity to 16384 customers. The proposed architecture is a potential candidate for future optical access networks. Indeed it spreads the cost of the network equipment over a very large customer base, allows for node consolidation and integration of metro and optical access networks into an all-optical system
    corecore