96 research outputs found

    The influence of granite cutting waste on the properties of ultra-high performance concrete

    Get PDF
    This study analyzes the effect of using waste by-products generated in the process of granite cutting as part of the granular structure of Ultra High Performance Concrete (UHPC). The manufactured concrete has a compressive strength greater than 115 MPa. This study substitutes 35%, 70% and 100% of the volume of micronized quartz powder (<40 m) with granite cutting waste. This is an innovative study where the feasibility of using waste from granite quarries as a replacement for micronized quartz in UHPC has been analyzed. The results show an improvement in the workability and compressive strength of UHPC, for all substitution ratios. The flexural strength and tensile strength increase when the substitution ratio is 35%, and even the values obtained for 100% substitution are acceptable. In view of the results obtained in this study, granite cutting waste, instead of the micronized quartz powder usually used, is a viable alternative for the manufacture of expectedly more sustainable UHPC.Peer ReviewedPostprint (published version

    No evidence that wild red deer (Cervus elaphus) on the Iberian Peninsula are a reservoir of Mycobacterium avium subspecies paratuberculosis infection

    Get PDF
    The potential role of red deer (Cervus elaphus) as a reservoir of Mycobacterium avium subspecies paratuberculosis (MAP) infection is largely unknown. A total of 332 wild red deer were investigated using post-mortem examination, bacteriology and serology. Only three animals (1.12%) were found to have lesions on histopathological examination and no MAP bacteria were recovered on culture. The results suggest it is unlikely that wild red deer make a significant contribution to the maintenance of MAP infection in the region. The cross-reactivity of the ELISAs used indicates this diagnostic modality is ineffective in the detection of MAP infection in this species. The implications of these results for the control of this important pathogen in both livestock and wildlife are discussed

    Origin, accumulation and fate of dissolved organic matter in an extreme hypersaline shallow lake

    Full text link
    Hypersaline endorheic aquatic systems (H-SEAS) are lakes/shallow playas in arid and semiarid regions that undergo extreme oscillations in salinity and severe drought episodes. Although their geochemical uniqueness and microbiome have been deeply studied, very little is known about the availability and quality of dissolved organic matter (DOM) in the water column. A H-SEAS from the Monegros Desert (Zaragoza, NE Spain) was studied during a hydrological wetting-drying-rewetting cycle. DOM analysis included: (i) a dissolved organic carbon (DOC) mass balance; (ii) spectroscopy (absorbance and fluorescence) and (iii) a molecular characterization with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The studied system stored a large amount of DOC and under the highest salinity conditions, salt-saturated waters (i.e., brines with salinity > 30%) accumulated a disproportionate quantity of DOC, indicating a significant in-situ net DOM production. Simultaneously, during the hydrological transition from wet to dry, the DOM pool showed strong alterations of it molecular composition. Spectroscopic methods indicated that aromatic and degraded DOM was rapidly replaced by fresher, relatively small, microbial-derived moieties with a large C/N ratio. FT-ICR-MS highlighted the accumulation of small, saturated and oxidized molecules (molecular O/C > 0.5), with a remarkable increase in the relative contribution of highly oxygenated (molecular O/C > 0.9) compounds and a decrease of aliphatic and carboxyl-rich alicyclic moleculesThese results indicated that H-SEAS are extremely active in accumulating and processing DOM, with the notable release of organic solutes probably originated from decaying microplankton under large osmotic stress at extremely high salinitie

    A comparative analysis of body psychotherapy and dance movement psychotherapy from a European perspective

    Get PDF

    Protection against Tuberculosis in Eurasian Wild Boar Vaccinated with Heat-Inactivated Mycobacterium bovis

    Get PDF
    Tuberculosis (TB) caused by Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis complex continues to affect humans and animals worldwide and its control requires vaccination of wildlife reservoir species such as Eurasian wild boar (Sus scrofa). Vaccination efforts for TB control in wildlife have been based primarily on oral live BCG formulations. However, this is the first report of the use of oral inactivated vaccines for controlling TB in wildlife. In this study, four groups of 5 wild boar each were vaccinated with inactivated M. bovis by the oral and intramuscular routes, vaccinated with oral BCG or left unvaccinated as controls. All groups were later challenged with a field strain of M. bovis. The results of the IFN-gamma response, serum antibody levels, M. bovis culture, TB lesion scores, and the expression of C3 and MUT genes were compared between these four groups. The results suggested that vaccination with heat-inactivated M. bovis or BCG protect wild boar from TB. These results also encouraged testing combinations of BCG and inactivated M. bovis to vaccinate wild boar against TB. Vaccine formulations using heat-inactivated M. bovis for TB control in wildlife would have the advantage of being environmentally safe and more stable under field conditions when compared to live BCG vaccines. The antibody response and MUT expression levels can help differentiating between vaccinated and infected wild boar and as correlates of protective response in vaccinated animals. These results suggest that vaccine studies in free-living wild boar are now possible to reveal the full potential of protecting against TB using oral M. bovis inactivated and BCG vaccines

    Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis

    Get PDF
    Tuberculosis (TB) remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs) in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar

    Rabies and canine distemper virus epidemics in the red fox population of Northern Italy (2006–2010)

    Get PDF
    Since 2006 the red fox (Vulpes vulpes) population in north-eastern Italy has experienced an epidemic of canine distemper virus (CDV). Additionally, in 2008, after a thirteen-year absence from Italy, fox rabies was re-introduced in the Udine province at the national border with Slovenia. Disease intervention strategies are being developed and implemented to control rabies in this area and minimise risk to human health. Here we present empirical data and the epidemiological picture relating to these epidemics in the period 2006-2010. Of important significance for epidemiological studies of wild animals, basic mathematical models are developed to exploit information collected from the surveillance program on dead and/or living animals in order to assess the incidence of infection. These models are also used to estimate the rate of transmission of both diseases and the rate of vaccination, while correcting for a bias in early collection of CDV samples. We found that the rate of rabies transmission was roughly twice that of CDV, with an estimated effective contact between infected and susceptible fox leading to a new infection occurring once every 3 days for rabies, and once a week for CDV. We also inferred that during the early stage of the CDV epidemic, a bias in the monitoring protocol resulted in a positive sample being almost 10 times more likely to be collected than a negative sample. We estimated the rate of intake of oral vaccine at 0.006 per day, allowing us to estimate that roughly 68% of the foxes would be immunised. This was confirmed by field observations. Finally we discuss the implications for the eco-epidemiological dynamics of both epidemics in relation to control measures
    corecore