217 research outputs found

    Water at an electrochemical interface - a simulation study

    Full text link
    The results of molecular dynamics simulations of the properties of water in an aqueous ionic solution close to an interface with a model metallic electrode are described. In the simulations the electrode behaves as an ideally polarizable hydrophilic metal, supporting image charge interactions with charged species, and it is maintained at a constant electrical potential with respect to the solution so that the model is a textbook representation of an electrochemical interface through which no current is passing. We show how water is strongly attracted to and ordered at the electrode surface. This ordering is different to the structure that might be imagined from continuum models of electrode interfaces. Further, this ordering significantly affects the probability of ions reaching the surface. We describe the concomitant motion and configurations of the water and ions as functions of the electrode potential, and we analyze the length scales over which ionic atmospheres fluctuate. The statistics of these fluctuations depend upon surface structure and ionic strength. The fluctuations are large, sufficiently so that the mean ionic atmosphere is a poor descriptor of the aqueous environment near a metal surface. The importance of this finding for a description of electrochemical reactions is examined by calculating, directly from the simulation, Marcus free energy profiles for transfer of charge between the electrode and a redox species in the solution and comparing the results with the predictions of continuum theories. Significant departures from the electrochemical textbook descriptions of the phenomenon are found and their physical origins are characterized from the atomistic perspective of the simulations.Comment: 29 pages, 15 figure

    Coherent Electron Transport across a 3 nm Bioelectronic Junction Made of Multi-Heme Proteins

    Get PDF
    Multi-heme cytochromes (MHCs) are fascinating proteins used by bacterial organisms to shuttle electrons within, between, and out of their cells. When placed in solid-state electronic junctions, MHCs support temperature-independent currents over several nanometers that are 3 orders of magnitude higher compared to other redox proteins of similar size. To gain molecular-level insight into their astonishingly high conductivities, we combine experimental photoemission spectroscopy with DFT+Σ current-voltage calculations on a representative Gold-MHC-Gold junction. We find that conduction across the dry, 3 nm long protein occurs via off-resonant coherent tunneling, mediated by a large number of protein valence-band orbitals that are strongly delocalized over heme and protein residues. This picture is profoundly different from the electron hopping mechanism induced electrochemically or photochemically under aqueous conditions. Our results imply that the current output in solid-state junctions can be even further increased in resonance, for example, by applying a gate voltage, thus allowing a quantum jump for next-generation bionanoelectronic devices

    Resting state electroencephalography microstates in autism spectrum disorder: a mini-review

    Get PDF
    Atypical spatial organization and temporal characteristics, found via resting state electroencephalography (EEG) microstate analysis, have been associated with psychiatric disorders but these temporal and spatial parameters are less known in autism spectrum disorder (ASD). EEG microstates reflect a short time period of stable scalp potential topography. These canonical microstates (i.e., A, B, C, and D) and more are identified by their unique topographic map, mean duration, fraction of time covered, frequency of occurrence and global explained variance percentage; a measure of how well topographical maps represent EEG data. We reviewed the current literature for resting state microstate analysis in ASD and identified eight publications. This current review indicates there is significant alterations in microstate parameters in ASD populations as compared to typically developing (TD) populations. Microstate parameters were also found to change in relation to specific cognitive processes. However, as microstate parameters are found to be changed by cognitive states, the differently acquired data (e.g., eyes closed or open) resting state EEG are likely to produce disparate results. We also review the current understanding of EEG sources of microstates and the underlying brain networks

    Mechanically activated rupture of single covalent bonds: evidence of force induced bond hydrolysis.

    Get PDF
    We have used temperature-dependent single molecule force spectroscopy to stretch covalently anchored carboxymethylated amylose (CMA) polymers attached to an amino-functionalized AFM cantilever. Using an Arrhenius kinetics model based on a Morse potential as a one-dimensional representation of covalent bonds, we have extracted kinetic and structural parameters of the bond rupture process. With 35.5 kJ mol−1, we found a significantly smaller dissociation energy and with 9.0 × 102 s−1 to 3.6 × 103 s−1 also smaller Arrhenius pre-factors than expected for homolytic bond scission. One possible explanation for the severely reduced dissociation energy and Arrhenius pre-factors is the mechanically activated hydrolysis of covalent bonds. Both the carboxylic acid amide and the siloxane bond in the amino-silane surface linker are in principle prone to bond hydrolysis. Scattering, slope and curvature of the scattered data plots indicate that in fact two competing rupture mechanisms are observed

    Exploratory genome-wide analyses of cortical inhibition, facilitation, and plasticity in late-life depression

    Get PDF
    Late-life depression (LLD) is a heterogenous mood disorder influenced by genetic factors. Cortical physiological processes such as cortical inhibition, facilitation, and plasticity may be markers of illness that are more strongly associated with genetic factors than the clinical phenotype. Thus, exploring the relationship between genetic factors and these physiological processes may help to characterize the biological mechanisms underlying LLD and improve diagnosis and treatment selection. Transcranial magnetic stimulation (TMS) combined with electromyography was used to measure short interval intracortical inhibition (SICI), cortical silent period (CSP), intracortical facilitation (ICF), and paired associative stimulation (PAS) in 79 participants with LLD. We used exploratory genome-wide association and gene-based analyses to assess for genetic correlations of these TMS measures. MARK4 (which encodes microtubule affinity-regulating kinase 4) and PPP1R37 (which encodes protein phosphatase 1 regulatory subunit 37) showed genome-wide significant association with SICI. EGFLAM (which encodes EGF-like fibronectin type III and laminin G domain) showed genome-wide significant association with CSP. No genes met genome-wide significant association with ICF or PAS. We observed genetic influences on cortical inhibition in older adults with LLD. Replication with larger sample sizes, exploration of clinical phenotype subgroups, and functional analysis of relevant genotypes is warranted to better characterize genetic influences on cortical physiology in LLD. This work is needed to determine whether cortical inhibition may serve as a biomarker to improve diagnostic precision and guide treatment selection in LLD

    Paired-Associative Stimulation-Induced Long-term Potentiation-Like Motor Cortex Plasticity in Healthy Adolescents

    Get PDF
    ObjectiveThe objective of this study was to evaluate the feasibility of using paired-associative stimulation (PAS) to study excitatory and inhibitory plasticity in adolescents while examining variables that may moderate plasticity (such as sex and environment).MethodsWe recruited 34 healthy adolescents (aged 13–19, 13 males, 21 females). To evaluate excitatory plasticity, we compared mean motor-evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation (TMS) before and after PAS at 0, 15, and 30 min. To evaluate inhibitory plasticity, we evaluated the cortical silent period (CSP) elicited by single-pulse TMS in the contracted hand before and after PAS at 0, 15, and 30 min.ResultsAll participants completed PAS procedures. No adverse events occurred. PAS was well tolerated. PAS-induced significant increases in the ratio of post-PAS MEP to pre-PAS MEP amplitudes (p < 0.01) at all post-PAS intervals. Neither socioeconomic status nor sex was associated with post-PAS MEP changes. PAS induced significant CSP lengthening in males but not females.ConclusionPAS is a feasible, safe, and well-tolerated index of adolescent motor cortical plasticity. Gender may influence PAS-induced changes in cortical inhibition. PAS is safe and well tolerated by healthy adolescents and may be a novel tool with which to study adolescent neuroplasticity

    Reorganization Energy for Internal Electron Transfer in Multicopper Oxidases.

    Get PDF
    We have calculated the reorganization energy for the intramolecular electron transfer between the reduced type 1 copper site and the peroxy intermediate of the trinuclear cluster in the multicopper oxidase CueO. The calculations are performed at the combined quantum mechanics and molecular mechanics (QM/MM) level, based on molecular dynamics simulations with tailored potentials for the two copper sites. We obtain a reorganization energy of 91-133 kJ/mol, depending on the theoretical treatment. The two Cu sites contribute by 12 and 22 kJ/mol to this energy, whereas the solvent contribution is 34 kJ/mol. The rest comes from the protein, involving small contributions from many residues. We have also estimated the energy difference between the two electron-transfer states and show that the reduction of the peroxy intermediate is exergonic by 43-87 kJ/mol, depending on the theoretical method. Both the solvent and the protein contribute to this energy difference, especially charged residues close to the two Cu sites. We compare these estimates with energies obtained from QM/MM optimizations and QM calculations in a vacuum and discuss differences between the results obtained at various levels of theory

    Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme.

    Get PDF
    Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 μm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme-heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis We observed rates of heme-to-heme electron transfer on the order of 109 s-1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser-Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-μs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies
    • …
    corecore