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Objective: The objective of this study was to evaluate the feasibility of using paired- 
associative stimulation (PAS) to study excitatory and inhibitory plasticity in adolescents 
while examining variables that may moderate plasticity (such as sex and environment).

Methods: We recruited 34 healthy adolescents (aged 13–19, 13 males, 21 females). 
To evaluate excitatory plasticity, we compared mean motor-evoked potentials (MEPs) 
elicited by single-pulse transcranial magnetic stimulation (TMS) before and after PAS at 
0, 15, and 30 min. To evaluate inhibitory plasticity, we evaluated the cortical silent period 
(CSP) elicited by single-pulse TMS in the contracted hand before and after PAS at 0, 15, 
and 30 min.

results: All participants completed PAS procedures. No adverse events occurred. PAS 
was well tolerated. PAS-induced significant increases in the ratio of post-PAS MEP to 
pre-PAS MEP amplitudes (p < 0.01) at all post-PAS intervals. Neither socioeconomic 
status nor sex was associated with post-PAS MEP changes. PAS induced significant 
CSP lengthening in males but not females.

conclusion: PAS is a feasible, safe, and well-tolerated index of adolescent motor cor-
tical plasticity. Gender may influence PAS-induced changes in cortical inhibition. PAS is 
safe and well tolerated by healthy adolescents and may be a novel tool with which to 
study adolescent neuroplasticity.

Keywords: developmental neuroplasticity, adolescent psychiatry, paired-associative stimulation, motor cortical 
plasticity, motor-evoked potentials, cortical silent period

inTrODUcTiOn

Adolescence is a period of tremendous neuronal plasticity characterized by synaptic pruning, and 
axonal myelination as the brain matures into its adult state (1, 2). Therefore, adolescence may be a 
unique period when vulnerability to disease and responsiveness to intervention are both enhanced 
(3, 4). Consequently, improving our understanding of normal neuronal processes in adolescence 
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could enable researchers and clinicians to both identify abnormal 
development and develop therapeutic interventions with which 
to correct it.

Psychiatric disorders such as depression and schizophrenia 
typically arise in late adolescence (5–8) and are associated with 
disrupted long-term potentiation (LTP) (9–11). LTP is a form of 
neuroplasticity that occurs when co-firing neurons become increas-
ingly associated over time (12). Although few paradigms permit 
direct assessment of LTP in humans, paired-associative stimula-
tion (PAS) is one such method (13). Player et al. (11), for instance, 
showed that PAS did not produce focal motor LTP in depressed 
adult patients, an effect which was ameliorated with treatment (14). 
Similarly, Batsikadze et al. (15) showed that serotonin modulates 
PAS-induced spike-dependent plasticity, enhancing PAS-induced 
motor facilitation. These findings highlight the potential utility of 
PAS as a neurophysiological technique to detect impaired plasticity.

In the original PAS experiment, Stefan et al. (13) administered 
single-pulse transcranial magnetic stimulation (TMS) over the left 
motor cortex in the area corresponding to the right abductor pol-
licis brevis (APB), taking an average of motor-evoked potentials 
(MEPs) to establish baseline motor cortical activity. Peripheral 
nerve stimulation (PNS) was then delivered to the median nerve 
before TMS, at an interstimulus interval (ISI) of 25 ms. An ISI of 
25 ms is estimated to allow for the synchronous arrival of both 
inputs to the motor cortex and was shown to induce lasting motor 
cortical plasticity (13).

Following PAS, participants receive single-pulse TMS again 
over the left motor cortex and MEPs recorded from the contralat-
eral APB. The average post-PAS MEPs are computed and a ratio 
of post-PAS to pre-PAS MEPs calculated. In instances where this 
ratio exceeds 1, denoting that the post-PAS average exceeded the 
pre-PAS average, PAS is said to have induced motor facilitation. 
Although the original PAS paradigm demonstrated PAS in the 
contralateral APB (13), it should be noted that PAS also influences 
the ipsilateral hemisphere (16). PAS-induced motor facilitation is 
a direct measure of LTP in vivo in humans (13).

PAS may also induce changes in GABAergic neurotrans-
mission. Although GABA causes membrane depolarization 
(excitation) early in development, it induces hyperpolarization 
(inhibition) in the mature brain (17). Pediatric TMS studies 
suggest that GABA-dependent cortical inhibition is disrupted in 
neuropsychiatric illnesses such as depression (18, 19). Croarkin 
et al. (18), for instance, showed that depressed adolescents with 
pretreatment deficits in long-interval cortical inhibition were 
less likely to respond to treatment with antidepressants. This 
developmental change during maturation, and its association 
with the onset of neuropsychiatric illness, highlights the need to 
study cortical inhibitory processes across the lifespan.

One measure of GABAB cortical inhibition is cortical silent period 
(CSP) which PAS lengthens (20). Both Stefan et al. (13) and Sale 
et al. (20), for instance, showed that PAS lengthened CSP in adults. 
Whether PAS would lengthen CSP in healthy adolescents remains 
to be seen, though one meta-analysis of age-related changes in TMS 
measures suggested that age did not change CSP length (21).

Data from pediatric TMS studies suggest single- and paired-
pulse TMS is a safe, tolerable, and minimal risk intervention 
(22–25). Further work in this area using novel investigational 

techniques is critical to understand liabilities to psychiatric illness 
in this developmental stage and enhance our understanding of 
disease mechanisms (2, 26, 27). Damji et al. (28) demonstrated 
that PAS was feasible and tolerable in a pediatric population. Their 
study, however, focused on a younger sample comprised mainly 
of children (mean age 12 years). Given the tremendous amount 
of neurocognitive development thought to occur during the teen 
years, we sought to establish whether PAS was a feasible and 
tolerable protocol with which to elucidate healthy developmental 
neuroplasticity in an adolescent sample. In addition, we sought 
to determine whether PAS would lengthen CSP in adolescents, 
as in adults.

We also sought to examine factors associated with neuro-
plasticity including sex, age, and socioeconomic status (SES). 
For example, previous work has demonstrated sex differences in 
synaptic connectivity in the frontal cortex in response to chronic 
(29) and prenatal stress (30). In humans, Tecchio et al. (31) found 
an age–sex interaction with older post-menopausal females 
showing no PAS-induced motor potentiation when compared to 
younger females and males of all ages. SES may also impact neu-
roplastic processes in the adolescent brain. Adolescents arising 
in impoverished conditions show lower academic achievement 
than higher SES peers, suggesting that SES may interact with this 
behavioral measure of neuroplasticity (32, 33).

Therefore, the aim of this study was twofold: (1) to determine 
whether PAS was feasible in adolescents and (2) to character-
ize potential external factors influencing PAS outcomes. To 
determine the feasibility of PAS in adolescents, we evaluated 
PAS-induced excitatory (motor facilitation) and inhibitory (CSP) 
plasticity in healthy adolescents, reporting on these measures as 
well as participant dropout. We also evaluated whether external 
factors such as sex, age, SES, and academic achievement influ-
enced PAS-induced plasticity. We hypothesized that PAS would 
induce motor facilitation in healthy adolescents. Moreover, we 
hypothesized PAS would lengthen CSP in adolescents, as in 
adults, in the absence of evidence to the contrary.

MaTerials anD MeThODs

This study was approved by the Research Ethics Board of the 
Centre for Addiction and Mental Health (CAMH) in Toronto. 
In accordance with the recommendations of the Declaration of 
Helsinki, all participants provided their written informed consent 
prior to participation. The protocol was approved by the Research 
Ethics Board of the CAMH in Toronto, ON, Canada.

To evaluate the feasibility of using PAS in healthy adolescents, 
we delivered PAS according to the methods described by Stefan 
et  al. (13). All data were collected at the Temerty Centre for 
Therapeutic Brain Intervention at CAMH. A research associate 
provided full information about the study objectives, procedures, 
and known potential adverse events. Participants were invited 
to describe study procedures and their understanding of the 
implications for their circumstances to assess capacity. Capable 
participants aged 16–19 provided their written informed consent 
before study commencement. Those aged 13–16 gave their 
written informed assent while a parent or guardian gave written 
informed consent for their child to participate.
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Participants
We recruited adolescents aged 13–19 from community agencies, 
schools, and the Internet. Research associates contacted inter-
ested respondents who called the Temerty Centre for Therapeutic 
Brain Intervention, provided a non-standardized introduction of 
the study objectives, and described the potential risks associated 
with TMS. Respondents completed a standardized TMS safety 
screen and had the opportunity to ask questions about the 
study to which research associates provided non-standardized 
responses.

Eligible participants were English speakers, had parents who 
spoke conversational English, were right handed [according to 
the Oldfield handedness interview (34)], and were capable, or 
accompanied by a capable parent/guardian, to consent to study 
participation. Participants were ineligible if they had a known 
history of seizures, diagnosed psychiatric disorders, substance 
use in the preceding 3 months, unstable medical or neurological 
condition, intellectual disability, or were currently pregnant.

clinical assessments
Participants completed an interview with the Mini International 
Neuropsychiatric Inventory for Children and Adolescents 
(MINI-KID) 6.0 to rule out psychiatric illness (35). The MINI-
KID 6.0 possesses excellent sensitivity and specificity for alcohol 
abuse and dependence (sensitivity 0.94, specificity 0.96) and drug 
abuse and dependence (sensitivity 0.98, specificity 0.93), excellent 
inter-rater (AUC 1.00, K 1.00), and test–retest (AUC 0.99, K 0.98) 
reliability (35). We used the MINI-KID 6.0 for all participants. In 
participants under 16, we obtained parental responses with the 
same measure.

The Wide Range Achievement Test 4 (WRAT-4) was used to 
assess academic achievement (36). The WRAT-4 is a structured 
neuropsychological assessment instrument that examines read-
ing, sentence comprehension, spelling, and math computation. 
Age- and grade-based norms are available, and percentile rank-
ings are calculable from raw scores (36).

All participants provided their parent’s level of education and 
occupation. We calculated the Hollingshead Index (37), which 
measures SES based on a score comprised of ratings of parental 
occupation and education. Ratings of parental occupations range 
from a score of 9 (for proprietors of large businesses and profes-
sionals) to 1 (for menial service workers and laborers). Ratings 
of parental education range from 7 (graduate degree) to 1 (less 
than seventh grade). Two research associates assigned ratings 
independently based on categories described in Hollingshead’s 
original paper. We resolved discrepant ratings by consensus. We 
calculated the Hollingshead Index by multiplying the occupation 
score by a factor of 5 and the education score by a factor of 3. In 
two-parent homes, parental scores are summed and divided by 2 
yielding a minimum possible score of 8, and a maximum possible 
score of 66.

electromyography (eMg)
Each neurophysiology testing session lasted 1.5  h. Participants 
sat in a comfortable chair, with a cushion in their lap, and right 
forearm exposed. We prepped the thumb and volar surface of 
the forearm with an alcohol wipe for recording. We collected 

EMG data from disposable disks in a tendon-belly arrangement. 
Participants were directed to relax their right hand for the entirety 
of the study. EMG recording and speakers at high gain served as 
another measure of muscle activity throughout testing. The EMG 
signal was amplified (Intronix Technologies Corporation Model 
2024F, Bolton, ON, Canada), filtered (band pass 2 Hz–2.5 kHz), 
digitized at 5 kHz (Micro 1401, Cambridge Electronics Design, 
Cambridge, UK) and stored in a laboratory computer for offline 
analysis.

Transcranial Magnetic stimulation
We delivered single-pulse TMS to the left motor cortex with a 
7-cm figure-of-eight coil and a Magstim 200 stimulator (Magstim 
Company, Whitland, UK). We used a moderately suprathreshold 
stimulus to identify the optimal APB stimulation location, mark-
ing it with a felt-tipped marker to ensure consistent coil place-
ment across trials. The handle of the coil pointed backward at 45° 
to the mid-sagittal line and perpendicular to the central sulcus.

We determined the resting motor threshold (RMT) at the opti-
mal stimulation position. We defined the RMT as the minimum 
stimulus intensity needed to produce a response of at least 50 µV 
in the relaxed APB in 5 of 10 consecutive trials. The stimulus 
intensity required to evoke a 1-mV peak-to-peak response (SImV) 
was then determined. Stefan and colleagues found the SI1mV to be 
approximately 120% of the RMT (13). We defined the SI1mV as the 
stimulus intensity required to evoke, on average, a MEP of 1 mV 
in amplitude over 15 trials. If the average MEP over 15 trials was 
not 1 mV upon using 120% of RMT, the intensity was adjusted in 
2% increments until we determined the SI1mV. Upon determining 
the SI1mV to be used in the study, we measured MEP over 20 trials 
and computed the average MEP.

Median nerve stimulation
The median nerve provides sensory innervation to the thumb, 
index, long, and medial edge of the fourth finger, and motor 
innervation of the thenar and two lumbrical muscles. We deliv-
ered constant current square wave pulses by a standard, cathode 
proximal stimulation block. To determine the sensory threshold, 
we asked participants to close their eyes and respond affirmatively 
each time they noted a sensation. We defined the sensory threshold 
as the lowest stimulus intensity evoking a positive response. We 
set the pulse width to 200 µs and the stimulus intensity at 300% 
of the sensory threshold. As attention modulates PAS-induced 
plasticity, we employed the method described by Stefan et al. (38), 
asking participants to count the total number of median nerve 
stimuli they had received during the study process and at the end 
of the study.

experimental Design
Participants underwent RMT, and SI1mV, and CSP testing at 
baseline. PAS consisted of median nerve stimulation at 300% 
sensory threshold followed by TMS at the SI1mV intensity at an 
ISI of 25 ms. Stefan et al. (13) previously showed that an ISI of 
25 ms can induce motor facilitation. This interval is thought to 
represent the time required for a median nerve stimulus to reach 
the motor cortex contemporaneously with the TMS pulse. In the 
present study, we delivered 180 pairs of stimuli at 0.1  Hz. We 
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FigUre 1 | shows the ratio of the raw post-paired-associative 
stimulation (Pas) motor-evoked potential (MeP) over the raw  
pre-Pas MeP. A ratio over 1 suggests a post-PAS increase in MEP. PAS 
induced significant motor facilitation at 15- and 30-min post-PAS (p = 0.013 
and p = 0.007, respectively); however, MEPs at 0-min post-PAS were not 
significantly different from baseline once log-transformed. Error bars  
depict SEM.

TaBle 1 | Participant characteristics and neurophysiology (N = 34).

Age (years ± SD) 17.7 ± 1.3
N (%)

Age 13–16 7 (20.5)
Age 17–19 27 (79.4)

Gender
Female 21 (61.7)

Ethnicity
Caucasian 6 (17.6)
East Asian 17 (50.0)
South Asian 3 (8.8)
African/Afro-Caribbean 7 (20.6)
Latino 1 (2.9)

Mini International Neuropsychiatric Inventory 
for Children and Adolescents 6.0 Diagnoses

0 (0%)

Wide Range Achievement Test 4 standard 
scores (mean score ± SD)

Word reading 110.1 ± 16.1
Sentence completion 97.1 ± 12.5
Spelling 115.0 ± 17.9
Math computation 108.2 ± 18.4

Mean Hollingshead Index 50.6 ± 11.5
Mean baseline motor-evoked potential 0.82 ± 0.25 mV
Mean resting motor threshold 57.4 ± 10.7%  

stimulator output
Mean SI1mV 71.4 ± 11.9%  

stimulator output
Mean sensory threshold 1.1 ± 0.9 mA
Mean peripheral nerve stimulation intensity 3.4 ± 2.7 mA
Mean stimulation count 177 ± 19
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calculated the mean of 20 MEPs evoked by the SI1mV at 0, 15, and 
30 min after PAS. Figure 1 showed the ratios of mean MEPs to 
baseline mean MEP. We measured CSP at baseline and 30 min 
post-PAS. Participants were asked to grasp a pinch gage at 20% 
of their maximal grip strength while we delivered single-pulse 
TMS at 140% RMT intensity at a frequency of 0.1 Hz. Participants 
completed 10 trials for each CSP session.

Data analysis
We calculated descriptive statistics of sample demographics and 
WRAT-4 scores. We used a non-parametric ANOVA test (the 
Friedman test) to compare mean MEPs evoked at baseline, 0-, 15-,  
and 30-min post-PAS since ratio data were not normally 
distributed. We then completed post  hoc paired-comparisons 
between MEP values with a two-tailed Wilcoxon signed rank test 
between each post-PAS time point and baseline, correcting for 
multiple comparisons (i.e., three) with an a  priori significance 
level of 0.0167. To evaluate PAS-induced changes in CSP, we 
used repeated measures ANOVA with “PAS session” as a within-
subject factor and “sex” as a between-subject factor. We chose 
parametric testing for this measure since, unlike ratio data, 
CSP duration was normally distributed. The CSP duration was 
defined as the time between onset of MEP and return of voluntary 
contraction on EMG and determined by visual inspection as 
previously described (39). For CSP, we set the a priori significance 
level to 0.05. We completed all analyses with SPSS 22 (IBM Corp., 
Armonk, NY, USA, 2013).

To evaluate the impact of various independent variables on 
MEP potentiation, we evaluated Spearman’s correlation between 
the average PAS ratio and ordinal independent variables [SES 
(Hollingshead Index), WRAT scores, age, and sex]. We used the 
Wilcoxon rank-sum test to compare group differences for MEP 
potentiation due to categorical variables, which include gender 
and Hollingshead high vs. low using a median split [low ≤54 
(n = 17), high >54 (=17)].

resUlTs

Thirty-six eligible respondents contacted our lab for potential 
participation. One respondent aged out of our age range shortly 
after her telephone interview and became ineligible. One partici-
pant declined to undergo PAS due to a high RMT that would have 
necessitated a greater than maximal stimulator output intensity 
for PAS. He did not endorse side effects from TMS before or after 
termination.

Thirty-four eligible participants completed the study. 
Participants were aged 13–19 years (mean = 17.7 ± 1.3). Twenty-
one (61.8%) participants were female. Males and females did not 
differ in age (p = 0.45). Table 1 displays demographic informa-
tion, ethnicity, WRAT-4 scores, stimulation parameters, and 
mean pre-PAS MEP. All participants were healthy and demon-
strated average or above average academic achievement based on 
the MINI-KID and WRAT-4. Scores on the Hollingshead Index 
ranged from 24 to 66 (mean 51.0 ± 10.6). Participants guessed 
that they had received a mean of 177  ±  19 peripheral nerve 
pulses. A one-sample t-test did not reveal a significant difference 
between participant guesses and the actual total number of 180 
pulses (t = −0.907; df = 33; p = 0.371).

stimulus intensity, rMT, and sensory 
Threshold
Mean RMT was 57.4 ± 10.7% of stimulator output, mean SI1mV 
was 71.4 ± 11.9%, the mean sensory threshold was 1.1 ± 0.9 mA, 
and the mean PNS intensity was 3.4 ± 2.7 mA. We did not find any 
significant association among age, sex, Hollingshead and WRAT 
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FigUre 2 | shows the effect of paired-associative stimulation (Pas) 
on cortical silent period (csP). Male, but not female, adolescents showed 
significant post-PAS CSP lengthening (male > female, p < 0.05). Error bars 
depict SEM.
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scores with mean RMT, mean SI1mV, mean sensory threshold, or 
PNS intensity.

Pas-induced MeP Potentiation and csP 
changes
We confirmed our hypothesis that PAS would induce LTP-like 
plasticity in healthy adolescents. The ratio of post-PAS/pre-PAS 
MEPs exceeded one as shown in Figure  1. The results of our 
Friedman test showed that there was a significant main effect of 
time (χ2 = 13.17, df = 3, p < 0.005). Moreover, post hoc testing 
with a two-tailed Wilcoxon signed rank test revealed significant 
differences in MEPs from baseline at 15- and 30-min post-PAS 
(with exact p values of p = 0.0020 and p = 0.0017, respectively). 
These differences were significant even after Bonferroni correction 
for multiple comparisons with a threshold of p = 0.0167. MEPs 
were not significantly different from baseline at 0-min post-PAS. 
No correlation or group comparison of MEP potentiation with 
Hollingshead scores, WRAT scores, sex, and age showed any 
significant effect.

As shown in Figure 2, PAS caused a significant CSP change 
(F = 7.67, p = 0.009). We found a significant interaction between 
PAS session (PRE and POST) and sex (F  =  7.16, p  =  0.011). 
Males showed significant CSP lengthening post-PAS (mean dif-
ference = 0.024, p = 0.014). Conversely, females showed no PAS-
induced CSP changes (mean difference = 0.0004, p = 0.929). CSP 
was uncorrelated with age, Hollingshead score, or WRAT score.

DiscUssiOn

To our knowledge, this is one of the first studies demonstrating 
that PAS is both feasible and tolerable in an adolescent sample 
(28, 40). Damji et al. (28) showed that PAS was safe and toler-
able, and produced motor facilitation in a majority of their study 
participants. Their sample consisted of 28 participants [20 males 
(71.4%)] with a mean age of 12 years. By contrast, our sample con-
sisted of 34 participants, a majority of whom were female [n = 21 
(61.8%)] with a mean age of 17 years. Our mean sample age was, 
therefore, situated in a continuum between Damji et al. (28) and 
Stefan et  al. (13). While Damji et  al. (28) delivered 90 pairs of 
stimuli during PAS, we administered 180 pairs in an adolescent 

sample. We also evaluated the effect of PAS on CSP, a measure of 
GABAB-mediated inhibitory tone. Finally, we examined whether 
external factors such as SES and academic achievement could 
impact PAS-induced motor facilitation.

Stimulator intensities for RMT and mean SI1mV were high 
in our study sample. In contrast to Stefan et al. (13) who used 
between 40 and 50% of maximal stimulator intensity for RMT 
and mean SI1mV, adolescents in our study required 57.4 ± 10.7 and 
71.4 ± 11.9% (mean ± SD), respectively. These higher stimulation 
intensities are similar to those used in previous pediatric TMS 
studies. Croarkin et al. (41) found intensities of 60.90 ± 5.89% 
(least squares mean ± SE) and 54.96 ± 6.28% of maximal stimula-
tor output for RMT and SI1mV in depressed adolescents. Similarly, 
Damji et al. (28) found an RMT of 58.9 ± 14.5% (range 32–92%; 
mean ± SD) with a mean SI1mV of 68.9 ± 14.3% in non-responders 
to 63.9 ± 12.2% in definite responders. Our findings further con-
firm this developmental progression of RMT, supporting findings 
of Bender et  al. (42) who showed RMT and age are inversely 
related.

Our results suggest PAS can index LTP-like plasticity in healthy 
adolescents. PAS may, therefore, be a new way with which to 
study aberrant neuroplasticity in adolescents with mental illness. 
Research suggests PAS outcomes differ among healthy adults and 
those with mental illness (10, 43). Since most neuropsychiatric 
disorders arise in adolescence (8, 44), PAS may allow for identifi-
cation of mental illness earlier in development, permitting earlier 
intervention.

Our results also highlight the safety and feasibility of PAS in an 
adolescent sample. No participants experienced adverse events 
related to stimulation. Garvey et  al. (22) evaluated children’s 
experiences of single-pulse TMS. Children found TMS more 
enjoyable than receiving an injection (92%), going to the dentist 
(84%), throwing up at school (79%), and going on a long car ride 
(74%). A minority of these children also suggested TMS was more 
enjoyable than watching television (41%), playing a game (28%), 
or going to a birthday party (15%). As in Damji et al. (28), all 
our participants completed the PAS procedure without incident. 
Together, these findings suggest that PAS could indeed be used to 
evaluate plasticity in adolescents.

In our study, males, but not females, showed significant 
PAS-induced CSP lengthening. Since the change in CSP may 
represent plasticity of GABAergic circuitry, these findings sug-
gest a possible influence of sex hormones on the plasticity of 
GABA transmission. While direct evidence from human studies 
is limited, the effect of estradiol on GABA transmission is well 
characterized in the animal literature. Calza et al. (45) found that 
neonatal administration of estradiol increased production of  
α1, α2, and γ2 subunits of cortical GABAA receptors. Similarly, Locci 
et al. (46) showed that neonatal exposure to estradiol increased 
the expression of hippocampal extrasynaptic α4/δ subunit- 
containing GABAA receptors, resulting in improved spatial learn-
ing. Carver and Reddy (47) provide a comprehensive review of 
the literature demonstrating the allosteric effect of neurosteroids 
on GABA neurotransmission. Another possible explanation for 
the sex difference found in our sample relates to previous studies 
that GABA transmission fluctuates with the menstrual cycle. For 
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example, Vigod et  al. (48) reported that cortical GABA levels 
decrease in the mid-follicular phase of the menstrual cycle, dur-
ing pregnancy, and immediately post-partum. It is possible that 
plasticity of GABAergic circuitry also decreases during follicular 
phase, which could partially explain our findings. Alternatively, 
testosterone may modulate GABAergic interneuron neurocir-
cuitry during development. Animal and human work suggests 
that sex steroids modulate GABAergic tone (49–51). In male 
mice, increased testosterone during adolescence accompanies an 
increase in BDNF (52). BDNF is known to enhance maturation 
of GABAergic neurons (53). Therefore, the lengthening of CSP 
in males in our sample could reflect a testosterone-driven effect.

Evidence from animal and human research suggests environ-
mental factors are critical in brain development (54–58). It is 
unclear why we did not find SES effects in the present study. The 
mean Hollingshead Index in this sample was 50.6 ± 11.5, reflect-
ing a higher than average SES among participants. Moreover, 
we tested PAS in the motor cortex. It is possible that SES effects 
may be more readily revealed in regions, such as the dorsolateral 
prefrontal cortex (59).

This study had several limitations. The study sample con-
sisted of a majority of females (i.e., 21) with a minority of male 
participants (i.e., 13). It is possible that this smaller number of 
adolescent males showed less variability than females. We did 
not synchronize menstrual cycles or account for menarche in 
the female participants, potentially introducing variability in the 
female sample on account of varying brain GABA levels. Still, 
the variability in male and female CSP duration was comparable 
across groups as shown in Figure 2. Therefore, we interpret this 
difference in PAS-induced CSP with caution. In addition, we did 

not include a sham condition or vary the ISI interval between 
TMS and PNS pulses as the authors of the original PAS studies 
had done (13). Future studies could evaluate the impact of sham 
TMS stimulation, or varying the ISI (between 10 and 100 ms) on 
PAS-induced motor cortical plasticity.

Our results demonstrate significant PAS-induced motor corti-
cal plasticity in healthy adolescents. Applying PAS to adolescents 
was safe and well tolerated. We also found significantly greater 
inhibitory neuroplasticity in young males compared to young 
females. It is possible that differences in testosterone-induced 
maturation of GABA neurons or fluctuating GABA levels with 
female menstrual cycles account for this finding. PAS may 
eventually serve as an investigational tool in at-risk adolescents, 
elucidating mechanisms of psychiatric illness.
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