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ARTICLE OPEN

Exploratory genome-wide analyses of cortical inhibition,
facilitation, and plasticity in late-life depression
Rafae A. Wathra1,2,10, Xiaoyu Men 3,10, Samar S. M. Elsheikh3, Victoria S. Marshe3, Tarek K. Rajji 1,2,3,4, Jennifer I. Lissemore 5,
Benoit H. Mulsant 2,3,4, Jordan F. Karp6, Charles F. ReynoldsIII7, Eric J. Lenze8, Zafiris J. Daskalakis9, Daniel J. Müller 2,3,11 and
Daniel M. Blumberger 1,2,3,11✉

© The Author(s) 2023

Late-life depression (LLD) is a heterogenous mood disorder influenced by genetic factors. Cortical physiological processes such as
cortical inhibition, facilitation, and plasticity may be markers of illness that are more strongly associated with genetic factors than
the clinical phenotype. Thus, exploring the relationship between genetic factors and these physiological processes may help to
characterize the biological mechanisms underlying LLD and improve diagnosis and treatment selection. Transcranial magnetic
stimulation (TMS) combined with electromyography was used to measure short interval intracortical inhibition (SICI), cortical silent
period (CSP), intracortical facilitation (ICF), and paired associative stimulation (PAS) in 79 participants with LLD. We used exploratory
genome-wide association and gene-based analyses to assess for genetic correlations of these TMS measures. MARK4 (which
encodes microtubule affinity-regulating kinase 4) and PPP1R37 (which encodes protein phosphatase 1 regulatory subunit 37)
showed genome-wide significant association with SICI. EGFLAM (which encodes EGF-like fibronectin type III and laminin G domain)
showed genome-wide significant association with CSP. No genes met genome-wide significant association with ICF or PAS. We
observed genetic influences on cortical inhibition in older adults with LLD. Replication with larger sample sizes, exploration of
clinical phenotype subgroups, and functional analysis of relevant genotypes is warranted to better characterize genetic influences
on cortical physiology in LLD. This work is needed to determine whether cortical inhibition may serve as a biomarker to improve
diagnostic precision and guide treatment selection in LLD.

Translational Psychiatry          (2023) 13:234 ; https://doi.org/10.1038/s41398-023-02532-0

INTRODUCTION
Depression is a multifactorial disease influenced by both genetic
and non-genetic factors [1]. In late-life, depression affects
approximately 15% of older adults living in the community [2].
Aging and depression are both associated with changes in cortical
physiology, such as cortical inhibition, excitation, and plasticity [3].
Exploring the relationship between genetic factors and cortical
physiological processes could improve our understanding of
biological mechanisms underlying late-life depression (LLD),
leading to improved diagnosis and selection of treatment (i.e.,
biomarker-informed precision psychiatry).
Twin studies suggest that 16–55% of the variance in depressive

symptoms in older adults may be due to genetic influences, and
heritability may be greater with increased age [4, 5]. However,
there has been limited success in identifying causal genetic loci for
LLD [6]. In a meta-analysis, polymorphisms in apolipoprotein E
(APOE), brain-derived neurotrophic factor (BDNF), and serotonin
transporter (SLC6A4) genes were associated with LLD [6]. Genome-

wide association studies (GWAS) of LLD have identified gene
variants associated with cognitive decline and antidepressant
response [7, 8]. However, environmental, epigenetic, and poly-
genic interactions make gene-depression signals difficult to detect
and interpret [9].
Neural plasticity and cortical physiology may be potential

pathways by which genes influence LLD. Transcranial magnetic
stimulation (TMS) can be used to assess various neurophysiolo-
gical measures. Short interval intracortical inhibition (SICI)
measures the suppression of motor-evoked potential (MEP)
amplitude when a suprathreshold TMS pulse is pre-conditioned
by 1–6ms with a subthreshold TMS pulse, which is indicative of
GABAA inhibitory activity [10]. The cortical silent period (CSP)
measures the duration of electromyography suppression when a
suprathreshold TMS pulse is given during a sustained muscle
contraction, which is indicative of GABAB inhibitory activity [11].
The resting motor threshold (RMT) is a general measure of
neuronal excitability, which is influenced by ion channel

Received: 5 January 2023 Revised: 16 June 2023 Accepted: 20 June 2023

1Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada. 2Department of Psychiatry, Temerty Faculty of
Medicine, University of Toronto, Toronto, Ontario M5T 1R8, Canada. 3Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario
M5T 1R8, Canada. 4Toronto Dementia Research Alliance, University of Toronto, Toronto, Ontario, Canada. 5Department of Psychiatry and Behavioral Sciences, Stanford University
Medical Center, Stanford, CA, USA. 6Department of Psychiatry, University of Arizona College of Medicine, Tucson, AZ, USA. 7Department of Psychiatry, University of Pittsburgh
School of Medicine, Pittsburgh, PA, USA. 8Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA. 9Department of Psychiatry, University of
California San Diego, San Diego, CA, USA. 10These authors contributed equally: Rafae A. Wathra, Xiaoyu Men. 11These authors jointly supervised this work: Daniel J. Müller, Daniel
M. Blumberger. ✉email: daniel.blumberger@camh.ca

www.nature.com/tpTranslational Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-023-02532-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-023-02532-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-023-02532-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-023-02532-0&domain=pdf
http://orcid.org/0000-0003-1594-666X
http://orcid.org/0000-0003-1594-666X
http://orcid.org/0000-0003-1594-666X
http://orcid.org/0000-0003-1594-666X
http://orcid.org/0000-0003-1594-666X
http://orcid.org/0000-0002-8324-2560
http://orcid.org/0000-0002-8324-2560
http://orcid.org/0000-0002-8324-2560
http://orcid.org/0000-0002-8324-2560
http://orcid.org/0000-0002-8324-2560
http://orcid.org/0000-0003-0192-1453
http://orcid.org/0000-0003-0192-1453
http://orcid.org/0000-0003-0192-1453
http://orcid.org/0000-0003-0192-1453
http://orcid.org/0000-0003-0192-1453
http://orcid.org/0000-0002-0303-6450
http://orcid.org/0000-0002-0303-6450
http://orcid.org/0000-0002-0303-6450
http://orcid.org/0000-0002-0303-6450
http://orcid.org/0000-0002-0303-6450
http://orcid.org/0000-0003-4978-4400
http://orcid.org/0000-0003-4978-4400
http://orcid.org/0000-0003-4978-4400
http://orcid.org/0000-0003-4978-4400
http://orcid.org/0000-0003-4978-4400
http://orcid.org/0000-0002-8422-5818
http://orcid.org/0000-0002-8422-5818
http://orcid.org/0000-0002-8422-5818
http://orcid.org/0000-0002-8422-5818
http://orcid.org/0000-0002-8422-5818
https://doi.org/10.1038/s41398-023-02532-0
mailto:daniel.blumberger@camh.ca
www.nature.com/tp


conductivity [12]. Intracortical facilitation (ICF) measures relative
MEP amplitude when a subthreshold TMS pulse precedes a
suprathreshold TMS pulse by 10–15ms, which is indicative of N-
methyl-D-aspartate (NMDA) receptor-related excitatory activity
[12]. Paired associative stimulation (PAS) refers to repeated
median nerve stimulation preceding TMS stimulation and
subsequent measurement of MEPs in a target muscle [13]. An
interstimulus interval of approximately 25 ms causes an excitatory
effect, and changes in subsequent MEP measurements indicate
long-term potentiation (LTP) like cortical plasticity [13].
The interaction among depression, aging, and genetics in the

pathophysiology of LLD remain unclear. Depression and advan-
cing age have both been related to changes in cortical physiology.
Attenuation in GABAA receptor-mediated cortical inhibition has
been demonstrated in patients with LLD, healthy older adults, and
younger adults with depression [3]. Decreases in cortical
excitability and impaired LTP-like plasticity have been shown in
healthy older adults and patients with major depressive disorder
(MDD) [14–16]. Existing GWAS and candidate gene studies have
assessed genetic correlations of various proxy phenotypes of
aging, including longevity, age-associated diseases, and physiolo-
gical characteristics, such as muscle strength and cognitive
function [17]. Several genes have been associated with aging,
including APOE, GRP78, and FOXO3A [17]. Aging-related genes
may influence measures of cortical physiology, as changes in
cortical physiology have been observed in healthy older adults
[14–16].
Few existing studies have assessed the association of genetic

polymorphisms with cortical physiological processes measured by
TMS. The BDNF gene encodes a protein that has been implicated
in neuronal survival, neuroplasticity, and synaptogenesis [18].
Substitution of valine to methionine at codon 66 (Val66Met) is the
most common and well-researched single nucleotide polymorph-
ism (SNP) of BDNF [18]. Multiple studies suggest that there are no
differences in SICI, CSP, ICF, or RMT dependent on the Val66Met
SNP in healthy participants, though this has not been explored in
LLD [19–22]. A few studies report that an increase in post-PAS MEP
amplitudes is diminished in those with the Val66Met SNP [23–25].
Even fewer studies have assessed the impact of other SNPs on
TMS indices of cortical physiology, and none that are specific to
LLD [26–29].
Thus, we conducted the first exploratory GWAS of TMS cortical

physiological processes in LLD. Based on the literature reviewed
above, we hypothesized that BDNF polymorphisms would be
associated with cortical physiology. Second, based on extensive
literature on the relationship between neurotransmitters and depres-
sion [1, 30], we hypothesized that variations in genes encoding for
serotonin [31, 32], norepinephrine [33], dopamine [34, 35], GABA
[36, 37], and glutamate receptors and transporters [36, 37] would be
associated with cortical physiology changes in LLD.

METHODS
Participants
Participants were recruited from the Toronto site of two multi-center
clinical trials (ClinicalTrials.gov Identifiers: NCT00892047 and
NCT02263248). Participants completed TMS and genetic assessment prior
to receiving any treatment intervention in the trials. Informed consent was
obtained from all subjects. As described in details previously [38, 39], the
main inclusion criteria were: age ≥ 50 (although most participants were 60
years and older), current diagnosis of MDD as per the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition, and Montgomery-
Åsberg Depression Rating Scale (MADRS) [40] score ≥15. Exclusion criteria
were a diagnosis of dementia; Mini-Mental State Examination (MMSE)
score ≤21; a diagnosis of bipolar disorder or a psychotic disorder;
substance misuse; an unstable medical condition; and anticonvulsant use.
The sample for this analysis comprised 79 participants whose data (clinical,
TMS neurophysiology, and genetic) passed quality control.

TMS and electromyography measures
All TMS measures were conducted in accordance with international
consensus guidelines [41]. TMS was delivered to the left motor cortex
through a figure-of-eight coil (70 mm loop diameter) using two Magstim
200 stimulators (Magstim, Whitland, UK) connected by a Bistim module.
Participants were asked to remain relaxed with their eyes open.
Disposable 9 mm electrodes were attached to the abductor pollicis brevis
muscle (active electrode) and the interphalangeal joint of the thumb
(reference electrode) to measure surface electromyography (EMG). A
ground electrode was positioned on the upper forearm. The figure-of-eight
coil was held tangentially to the scalp over the left motor cortex “hot spot”
to evoke maximum MEP strength, with the handle pointing 45 degrees
from the midline to induce a posterior-to-anterior current flow. This
position was marked on the scalp to ensure consistent coil placement.
RMT was defined as the lowest TMS intensity that elicited an

MEP ≥ 50 μV in at least 5 of 10 consecutive trials. When assessing SICI,
ICF, and PAS, a suprathreshold TMS test pulse was defined as the TMS
intensity that evoked on average a ~1mV peak-to-peak MEP amplitude.
SICI and ICF were measured using paired-pulse TMS with a subthreshold
conditioning stimulus (80% of RMT) followed by a test pulse with an
interstimulus interval (ISI) of 2 ms (SICI) or 10ms (ICF). Participants
underwent 12 trials of test pulse alone (to determine the average
unconditioned MEP amplitude), 12 trials of test pulse 2ms after the
conditioning pulse, and 12 trials of test pulse 10ms after the conditioning
pulse. SICI and ICF ratios were calculated as the average respective
conditioned MEP amplitudes divided by the average unconditioned MEP
amplitudes.
CSP was measured using a suprathreshold pulse (140% of RMT)

delivered while participants maintained a voluntary isometric contraction
of the abductor pollicis brevis muscle at approximately 20% of maximum
contraction. The resulting silent period duration from MEP onset to return
of EMG activity was averaged across 10 trials.
PAS was assessed using stimulation of the right median nerve paired

with a suprathreshold TMS test pulse at an ISI of 25 ms. One hundred and
eighty pairs of stimuli were delivered at 0.1 Hz. Twenty TMS pulses at
0.1 Hz were delivered before PAS and at 0-, 15-, 30-, and 60-minutes post-
PAS, and resulting MEP amplitudes were measured. Ratios of average and
maximum post-PAS MEP amplitudes to pre-PAS MEP amplitudes were
calculated. Participants were asked to count the number of peripheral
nerve stimulations on the target hand during PAS, as attention affects PAS-
induced plasticity. This count was recorded randomly 8 times during the
assessment of PAS and used to determine an inattention score.

Genotyping and gene-based analyses
Genome-wide genotyping was performed using the Illumina PsychArray
Beadchip v1.3 endorsed by the Psychiatric Genomics Consortium for
participants from both trials. We applied to samples from both trials the
quality control (QC) procedure and imputation pipeline reported
previously in the first trial [42]. In the second trial, QC was also performed
following the standard protocol by Anderson et al. [43] and two
participants were removed due to excessive heterozygosity and genotyp-
ing missingness. 3827 variants were removed due to missingness, and
266,057 variants with <1% minor allele frequency (MAF) were excluded.
301,495 variants and 34 participants in the second trial entered genome-
wide imputation. According to the genipe pipeline, prephasing was first
conducted using SHAPEIT2 and 1000 Genomes Phase 3 reference panel,
followed by imputation using IMPUTE v2.2 in 5-Mb segments per
chromosome [44–47]. The final data were imputed with an information
threshold of ≥0.7, a completion rate of ≥0.95, and an imputation
probability threshold ≥0.9, resulting in 5,067,675 SNPs after imputation.
Out of the final imputed variants, 3,882,161 variants (76.6%) with a
MAF ≥ 0.05 were used in the analyses described below. After checking the
availability of genetic and TMS data, 45 participants from the first trial and
4,309,635 variants were merged with imputed samples from the second
trial. The final merged data file contained 79 participants and 3,331,137
variants.
Genome-wide association analysis was conducted on the merged data

using PLINK v2.0 [48]. We fitted a linear regression model for each of the
phenotypes (SICI at 2 ms, ICF at 10ms, maximum PAS ratio, average PAS
ratio, RMT, and CSP), adjusted for age, MADRS baseline score, and the first
three principal components of ancestry inference. Sensitivity analyses were
conducted that included sex as an additional covariate. GWAS summary
statistics were then utilized to conduct MAGMA gene-based analyses using
FUMA with default parameters [49, 50]. Using the 1000 Genome Project
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Phase 3 (2504 individuals, approximately 84 million SNPs) as the reference
panel, 3,331,137 SNPs were assigned to 18,580 genes within a 10 kb
window [46]. The genome-wide significance level after correcting for the
number of genes was 0.05/18,580= 2.691 × 10−6. In MAGMA analyses
implanted in FUMA, the gene-based Z-score is calculated based on a SNP-
wide mean model and we used the Z-score to infer the direction of gene
association. To check our hypothesis about the association between the
BDNF gene and cortical physiological changes in LLD, we looked for BDNF
among the MAGMA results. After MAGMA gene-based analyses, we
conducted gene-set enrichment analysis for SICI and CSP, which had
significantly associated genes. We used FUMA with default settings and
background genes mapped by MAGMA to determine whether there was
any overlap between the top 20 associated genes and pre-defined gene
sets relevant to a specific phenotype.

RESULTS
See Table 1 for the sociodemographic and clinical characteristics
of the 79 participants included in the GWAS analyses and the
subsequent gene-based analyses.

RMT
In the 79 participants with RMT data, among the mapped 18,580
genes, none of the 1154 nominally associated genes at the

threshold of p < 0.05 reached genome-wide significance (Supple-
mentary Fig. 1). The top association was the MRPS31 gene
(Mitochondrial Ribosomal Protein S31, Z= 4.19, p= 1.41 × 10−5;
Supplementary Table 1).

SICI
In the 78 participants with SICI data, MARK4 (Microtubule Affinity
Regulating Kinase 4, Z= 4.77, p= 9.35 × 10−7) and PPP1R37
(Protein Phosphatase 1 Regulatory Subunit 37, Z= 4.71,
p= 1.22 × 10−6) were positively associated with the SICI ratio
with genome-wide significance (Fig. 1, Table 2). Among the
independent SNPs assigned to MARK4 and PPP1R37, the top
associated SNP was rs75918199 in chromosome 19 (β= 0.50 [0.30,
0.71], p= 8.66 × 10−6). 1122 genes were nominally associated with
the phenotype (p < 0.05). Among the top 20 associated genes, the
gene-set enrichment analysis showed that the GWAS catalog
gene-set of Alzheimer’s disease or pleiotropy had 4 genes
(GEMIN7, MARK4, PPP1R37, and NKPD1) overlapped
(p= 1.74 × 10−7, adjusted-p= 3.16 × 10−4; Supplementary
Table 5).

CSP
In 76 participants with CSP data, EGFLAM (EGF-like Fibronectin
Type III and Laminin G Domains, Z= 4.94, p= 3.82 × 10−7) was
positively associated with CSP with genome-wide significance
(Fig. 2, Table 3). Among the independent SNPs assigned to
EGFLAM, the top associated SNP was rs2561139 in chromosome 5
(β=−0.02 [−0.03, −0.01], p= 7.85 × 10−6). 1126 genes were
nominally associated with the phenotype (p < 0.05). None of the
top 20 associated genes were overrepresented in the pre-defined
GWAS catalog reported gene sets.

ICF
In the 77 participants with ICF data, none of the 11,161 nominally
associated genes reached genome-wide significance (Supplemen-
tary Fig. 2). The top association was SMIM17 gene (Small Integral
Membrane Protein 17, Z= 4.30, p= 8.65 × 10−6; Supplementary
Table 2).

Average PAS ratio
In the 63 participants with a PAS ratio, none of the 1067 nominally
associated genes reached genome-wide significance (Supplemen-
tary Fig. 3). The top association was the TRIM58 gene (Tripartite
Motif Containing 58, Z= 3.72, p= 9.95 × 10−5; Supplementary
Table 3).

Table 1. Sociodemographic, clinical, and neurophysiological
characteristics of the participants.

Characteristic Median [IQR] or frequency (%)

Age 65 [62, 69.9]

Sex (Male, %) 29 (36.7%)

Ethnicity (European, %) 76 (96.2%)

MADRS score 26 [22, 30]

SICI 2 ms 0.51 [0.35, 0.76]

ICF 10ms 1.67 [1.30, 2.37]

Average PAS ratio 1.14 [0.77, 1.44]

Maximum PAS ratio 1.55 [1.02, 2.06]

CSP 0.12 [0.10, 0.15]

RMT 47 [41, 53.5]

CSP cortical silent period, ICF intracortical facilitation, IQR interquartile
range, MADRS Montgomery-Åsberg Depression Rating Scale, PAS paired
associative stimulation, RMT resting motor threshold, SICI short interval
intracortical inhibition.

Fig. 1 Gene-based analyses results for SICI. A Gene Manhattan plot. B Gene QQ (quantile-quantile) plot. Note: The dotted red line in (A) is
the genome-wide significant threshold p= 2.691 × 10−6. MARK4 Microtubule Affinity Regulating Kinase 4, PPP1R37 Protein Phosphatase 1
Regulatory Subunit 37, GEMIN7 Gem Nuclear Organelle Associated Protein 7, C11orf21 Chromosome 11 Open Reading Frame 21, MARK2
Microtubule Affinity Regulating Kinase 1, RCOR2 REST Corepressor 2, TRA2B Transformer 2 Beta Homolog, NKPD1 NTPase KAP Family P-Loop
Domain Containing 1, KRBA1 KRAB-A Domain Containing 1, TARDBP TAR DNA Binding Protein.
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Maximum PAS ratio
In the 63 participants with a PAS ratio, none of the 1107 nominally
associated genes reached genome-wide significance (Supplemen-
tary Fig. 4). The top association was the PRKAG3 gene (Protein
Kinase AMP-Activated Non-Catalytic Subunit Gamma 3, Z= 3.99,
p= 3.37 × 10−5; Supplementary Table 4).

Sensitivity Analyses
With sex as an additional covariate, PPP1R37 was not significantly
associated with SICI (Z= 4.53, p= 2.90 × 10−6). MARK4 remained
associated with SICI (Z= 4.58, p= 2.38 × 10−6) and EGFLAM
remained associated with CSP (Z= 4.94, p= 3.99 × 10−7) with
genome-wide significance. There were no other significant
associations.

DISCUSSION
We used exploratory GWAS and gene-based analyses to assess the
association between genes and TMS measures of cortical
inhibition, facilitation, or LTP-like plasticity in LLD. We had three
key findings. First, MARK4 (which encodes microtubule affinity-
regulating kinase 4) and PPP1R37 (which encodes protein
phosphatase 1 regulatory subunit 37) showed genome-wide
significant associations with SICI, an indirect measure of GABAA

receptor-mediated cortical inhibition. Second, EGFLAM (which
encodes EGF-like fibronectin type III and laminin G domains)
showed genome-wide significant association with CSP, an indirect
measure of GABAB receptor-mediated cortical inhibition. Third, no
genes showed a genome-wide significant association with RMT,
ICF, or PAS. These findings suggest there may be genetic
influences on cortical inhibition in older adults with LLD. Further
research is indicated to determine whether cortical inhibition may
serve as a biomarker to improve diagnostic precision and
treatment selection in this patient population.
SICI is believed to be an indirect measure of GABAA inhibitory

activity [10]. MARK4 and PPP1R37 were both associated with
decreased SICI in our sample. MARK4 encodes a protein that may
be involved in regulation of microtubule networks in neurons [51].
Increased expression of MARK4 has been shown in Alzheimer’s
disease (AD), and in vitro studies suggest MARK4 can potentiate
tau aggregation [51]. Based on gene enrichment testing in FUMA,
both MARK4 and PPP1R37 have been reported in “Alzheimer’s
disease or HDL levels” in the GWAS catalog (see Supplementary
Fig. 6). A de novo mutation of MARK4 has been associated with the
production of abnormally phosphorylated tau [51]. In vivo studies
in mice suggest tau expression may be associated with synaptic
plasticity deficits [52]. Elevated tau has also been associated with

depression, and recent literature suggests that LLD has a different
distribution of tau compared to AD [53, 54]. In theory, tau
aggregation could inhibit activity of GABAergic neurons, like its
effects on hippocampal neurons in AD [55]. Furthermore, MARK4
has also been shown to be upregulated in ischemic axonal injury
[56]. Cerebrovascular disease (CVD) may also contribute to LLD,
and CVD has also been linked to AD [57, 58].
PPP1R37 encodes for a protein believed to inhibit phosphatase

activity of protein phosphatase 1 (PP1) complexes [59]. Limited
literature exists on the function of this protein. A transcriptome-
wide analysis found an association of differential expression of
PPP1R37 in hippocampal tissue with AD compared to controls [60].
Post-mortem studies of patients with AD suggest that PP1 is
involved in regulation of tau dephosphorylation [61]. Experiments
in mice suggest PP1 activity mediates effects of β-amyloid on
synaptic plasticity in AD and PP1 has a role in long-term
depression of neuronal activity [61]. Thus, variance in expression
of PPP1R37 could lead to aberrant phosphorylation of neurotoxic
aggregates, with subsequent effects on GABAergic function. Of
note, PPP1R37 was not significantly associated with SICI in
sensitivity analyses including sex as an additional covariate. Sex
was not included as a covariate in the primary analyses due to
limited sample size, however, there is one existing study that
suggests biological males may have reduced SICI compared to
females [62]. More studies are needed to characterize the role of
sex in relation to depression and cortical physiology changes.
Existing literature reports a significant association between LLD

and AD, with LLD being a risk factor or prodrome for AD [63].
Several biological mechanisms may overlap between depression
and AD, including: inflammatory changes, CVD, decreased
neurotrophic factors, and deposits of β-amyloid plaques [63].
The potential associations of both MARK4 and PPP1R37 with AD-
related processes is supportive of a link between LLD and AD. The
age-by-disease interaction hypothesis of LLD suggests age-related
changes in gene expression in the brain may increase suscept-
ibility to multiple neurodegenerative disorders simultaneously
[64]. A previous study showed that deficits in cortical inhibition
measured with SICI can occur with aging, independent of
depression status [3]. Given that the present study is a cross-
sectional analysis of cortical physiology in LLD and there is no age-
matched control group, we cannot assess whether the potential
effects of MARK4 and PPP1R37 are related to depression, aging,
or both.
CSP is believed to be an indirect measure of GABAB inhibitory

activity [11]. EGFLAM was associated with increased CSP in our
sample. EGFLAM encodes a protein believed to enable calcium ion
and glycosaminoglycan binding activity [65]. Previous GWAS

Table 2. Summary statistics of top 10 genes associated with SICI ratio.

Gene Chromosome Start position Stop position NSNPs Z-Statistics p-value

MARK4 19 45572546 45818541 225 4.77 9.35 × 10−7

PPP1R37 19 45584654 45661335 157 4.71 1.22 × 10−6

GEMIN7 19 45572453 45604782 91 4.28 9.16 × 10−6

C11orf21 11 2306875 2334279 50 4.25 1.05 × 10−5

MARK2 11 63596400 63688491 62 4.13 1.80 × 10−5

RCOR2 11 63668693 63694316 11 3.91 4.67 × 10−5

TRA2B 3 185623694 185665924 49 3.82 6.70 × 10−5

NKPD1 19 45643008 45673408 9 3.69 1.13 × 10−4

KRBA1 7 149401872 149441664 35 3.68 1.16 × 10−4

TARDBP 1 11062414 11095796 35 3.64 1.37 × 10−4

MARK4 Microtubule Affinity Regulating Kinase 4, PPP1R37 Protein Phosphatase 1 Regulatory Subunit 37, GEMIN7 Gem Nuclear Organelle Associated Protein 7,
C11orf21 Chromosome 11 Open Reading Frame 21, MARK2 Microtubule Affinity Regulating Kinase 1, RCOR2 REST Corepressor 2, TRA2B Transformer 2 Beta
Homolog, NKPD1 NTPase KAP Family P-Loop Domain Containing 1, KRBA1 KRAB-A Domain Containing 1, TARDBP TAR DNA Binding Protein.
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studies suggest EGFLAM is associated with mathematical ability,
educational attainment, and SSRI response [66–68]. There are no
prior studies that have investigated the effect of EGFLAM on TMS
cortical physiology measures. More studies are needed to clarify if
EGFLAM is associated with cortical physiology.
Identifying predictors of response is important to optimize

treatment selection for LLD. In a previous study, a combination of
TMS measures of cortical excitability, with clinical and demo-
graphic data predicted response to venlafaxine treatment in LLD
with 73% accuracy [69]. The combination of TMS measures with
additional biomarkers, such as genetic data, may be useful for the
development of models with higher accuracy. As cortical
physiological processes are influenced by both neurostimulation
and pharmacotherapy, further investigation to characterize the
genetic determinants of cortical physiology in LLD may help
identify genetic biomarkers of treatment response.
In our study, BDNF did not show a genome-wide significant

association with SICI, CSP, ICF, RMT, or PAS. The association of
BDNF genotype with TMS cortical physiology measures has been
previously investigated. In a few studies in healthy participants,
there were no differences in SICI, ICF, CSP, or RMT based on BDNF
genotype [19–22]. In three small studies in young healthy
participants (N= 18–32), there was an increase in post-PAS MEP
amplitudes in those with the BDNF valine/valine genotype, but not
in those with the Val66Met SNP [23–25]. One case-control study
found a significant interaction between BDNF genotype and
catechol-O-methyltransferase genotype in PAS response, suggest-
ing there are likely polygenic determinants of LTP-like plasticity
[70]. A case-control study of 23 participants with MDD matched to
23 healthy controls reported greater post-PAS MEP amplitudes in
healthy controls than participants with depression, though there
was no statistically significant effect of BDNF genotype on
response to PAS [71]. There are also contradictory reports on
the effect of the Val66Met SNP on TMS cortical physiology
measures in response to interventions such as motor training,
intermittent theta-burst stimulation, and transcranial direct
current stimulation [19–22]. In light of our findings, based on lack
of agreement in studies, more studies are needed to clarify
whether BDNF is associated with cortical physiology in younger
and older adults with and without depression.
A limited number of prior studies have assessed the association

of other genes with TMS cortical physiology measures. A
randomized crossover trial of 92 healthy participants found no
effect of the SCN1A rs3812717 polymorphism on SICI, ICF, CSP, or
RMT, however, the SCNIA genotype modulated the effect of

carbamazepine on CSP [26]. A cross-sectional analysis of 77
healthy participants found two common TRPV1 SNPs do not have
an effect on SICI, ICF, CSP, or RMT [27]. A small randomized
crossover trial in children with Attention-deficit/hyperactivity
disorder (ADHD) found that genetic variation in the dopamine
transporter (DAT1) was not associated with baseline differences in
SICI or ICF, but DAT1 genotype influenced the effect of stimulant
administration on these measures [72]. A small exploratory study
of eight healthy participants suggested allelic variation in the
serotonin transporter promoter (5-HTTLPR) is associated with
differential cortical excitability at baseline or in response to
citalopram administration [28]. In addition, a case-control study in
24 participants with mild cognitive impairment compared to 24
age-matched controls found that APOE genotype was not
correlated with response to PAS [29]. There are no prior studies
that have investigated the effect of genes on TMS cortical
physiology measures in LLD specifically. In our study, SCN1A,
TRPV1, DAT1, and APOE did not show an association with TMS
cortical physiology measures, and more studies are needed to
clarify whether these genes are associated with cortical physiology
processes.
Some strengths of our analysis include comprehensive clinical

characterization of the patient sample and integration of several
biological measures related to genome-wide genotyping and TMS
neurophysiology. LLD is a heterogenous disorder in relation to
pathophysiology, clinical phenotype, and intervention response.
Recent literature suggests the importance of transdisciplinary
approaches to research in psychiatry, as biological systems rarely
act in isolation [73]. Comprehensive clinical and biological
characterization of patients receiving treatment for LLD is needed
given the complexity of depression and aging.
There were also several limitations in our analysis. First and

foremost, our sample size was small, increasing the risk of type II
error and potentially preventing us from finding true associations.
Second, our results were specific to the motor cortex, and it is
unclear how they would relate to other cortical regions. Future
studies should assess genetic correlations of TMS measures in
the dorsolateral prefrontal cortex directly, using TMS-EEG [74]. We
were unable to assess for epistasis, that has been shown to have
salient impacts on depression phenotypes [75, 76]. We were also
unable to assess for causal associations of genes with the TMS
processes, as this would require functional characterization of
genotypes. As there is no control group in the analysis, we are
unable to distinguish whether the identified SNPs are more
relevant to depression or aging.

Fig. 2 Gene-based analyses results for CSP. A Gene Manhattan plot. B Gene QQ (quantile-quantile) plot. Note: The dotted red line in (A) is the
genome-wide significant threshold p= 2.691 × 10−6. EGFLAM EGF Like - Fibronectin Type III and Laminin G Domains, FHL2 Four And A Half
LIM Domains 2, SPTB Spectrin Beta Erythrocytic, PCK1 Phosphoenolpyruvate Carboxykinase 1, NOTCH4 Notch Receptor 4, AOX1 Aldehyde
Oxidase 1, C17orf103 N-Acetyltransferase Domain Containing 1, GNG11 G Protein Subunit Gamma 11, TNFAIP6 TNF Alpha Induced Protein 6,
FRYL FRY Like Transcription Coactivator.
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Furthermore, additional covariates that may impact cortical
physiology, such as prescribed medications and comorbidities,
were not accounted for in this analysis. Limited evidence suggests
that single doses of specific serotonin reuptake inhibitors and
norepinephrine reuptake inhibitors may have transient effects on
cortical physiology [31–33]. Several studies suggest that admin-
istration of dopamine agonists and antagonists can modulate
cortical inhibition, facilitation, and plasticity [34, 35, 77]. The
impacts of other psychotropic classes, treatment duration, and
medication interactions on cortical physiology have not been well-
characterized. In addition, medical comorbidities are relatively
common in older adults. Prior studies show that following stroke
there may be reduced SICI, which may persist throughout the
recovery course [78, 79]. The impact of other comorbidities, such
as cerebrovascular disease or other neurological conditions, on
cortical physiology is not well-defined. More studies are needed to
elucidate the role of medications and comorbidities in cortical
physiology.
In conclusion, our results suggest there may be genetic

influences on cortical physiology in LLD. MARK4 and PPP1R37
(two genes that have been linked to AD), and EGFLAM, may
influence cortical inhibition in LLD. Replication with larger sample
sizes and functional analyses of relevant SNPs is needed to
determine possible causal associations of genes with TMS
measures. With an increasing number of treatment options
available for LLD, it is important to characterize the influences of
genetics on cortical neurophysiology. This could facilitate optimi-
zation of treatment selection and advancement of personalized
medicine for LLD.
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