8,210 research outputs found

    Microwave Scattering and Noise Emission from Afterglow Plasmas in a Magnetic Field

    Get PDF
    The microwave reflection and noise emission (extraordinary mode) from cylindrical rare‐gas (He, Ne, Ar) afterglow plasmas in an axial magnetic field is described. Reflection and noise emission are measured as a function of magnetic field near electron cyclotron resonance (ω ≈ ω_c) with electron density as a parameter (ω_p < ω). A broad peak, which shifts to lower values of ω_c/ω) as electron density increases, is observed for (ω_c/ω) ≤ 1. For all values of electron density a second sharp peak is found very close to cyclotron resonance in reflection measurements. This peak does not occur in the emission data. Calculations of reflection and emission using a theoretical model consisting of a one‐dimensional, cold plasma slab with nonuniform electron density yield results in qualitative agreement with the observations. Both the experimental and theoretical results suggest that the broad, density‐dependent peak involves resonance effects at the upper hybrid frequency ((ω_h)^2 = (ω_c)^2 + (ω_p)^2) of the plasma

    End states, ladder compounds, and domain wall fermions

    Get PDF
    A magnetic field applied to a cross linked ladder compound can generate isolated electronic states bound to the ends of the chain. After exploring the interference phenomena responsible, I discuss a connection to the domain wall approach to chiral fermions in lattice gauge theory. The robust nature of the states under small variations of the bond strengths is tied to chiral symmetry and the multiplicative renormalization of fermion masses.Comment: 10 pages, 4 figures; final version for Phys. Rev. Let

    Ion observations from geosynchronous orbit as a proxy for ion cyclotron wave growth during storm times

    Get PDF
    [1] There is still much to be understood about the processes contributing to relativistic electron enhancements and losses in the radiation belts. Wave particle interactions with both whistler and electromagnetic ion cyclotron (EMIC) waves may precipitate or accelerate these electrons. This study examines the relation between EMIC waves and resulting relativistic electron flux levels after geomagnetic storms. A proxy for enhanced EMIC waves is developed using Los Alamos National Laboratory Magnetospheric Plasma Analyzer plasma data from geosynchronous orbit in conjunction with linear theory. In a statistical study using superposed epoch analysis, it is found that for storms resulting in net relativistic electron losses, there is a greater occurrence of enhanced EMIC waves. This is consistent with the hypothesis that EMIC waves are a primary mechanism for the scattering of relativistic electrons and thus cause losses of such particles from the magnetosphere

    The Functional Derivation of Master Equations

    Full text link
    Master equations describe the quantum dynamics of open systems interacting with an environment. They play an increasingly important role in understanding the emergence of semiclassical behavior and the generation of entropy, both being related to quantum decoherence. Presently we derive the exact master equation for a homogeneous scalar Higgs or inflaton like field coupled to an environment field represented by an infinite set of harmonic oscillators. Our aim is to demonstrate a derivation directly from the path integral representation of the density matrix propagator. Applications and generalizations of this result are discussed.Comment: 10 pages; LaTex. - Contribution to the workshop Hadron Physics VI, March 1998, Florianopolis (Brazil); proceedings, E. Ferreira et al., eds. (World Scientific). Replaced by slightly modified published versio

    Breaking through: The effects of a velocity distribution on barriers to dust growth

    Full text link
    It is unknown how far dust growth can proceed by coagulation. Obstacles to collisional growth are the fragmentation and bouncing barriers. However, in all previous simulations of the dust-size evolution in protoplanetary disks, only the mean collision velocity has been considered, neglecting that a small but possibly important fraction of the collisions will occur at both much lower and higher velocities. We study the effect of the probability distribution of impact velocities on the collisional dust growth barriers. Assuming a Maxwellian velocity distribution for colliding particles to determine the fraction of sticking, bouncing, and fragmentation, we implement this in a dust-size evolution code. We also calculate the probability of growing through the barriers and the growth timescale in these regimes. We find that the collisional growth barriers are not as sharp as previously thought. With the existence of low-velocity collisions, a small fraction of the particles manage to grow to masses orders of magnitude above the main population. A particle velocity distribution softens the fragmentation barrier and removes the bouncing barrier. It broadens the size distribution in a natural way, allowing the largest particles to become the first seeds that initiate sweep-up growth towards planetesimal sizes.Comment: 4 pages, 3 figures. Accepted for publication as a Letter in Astronomy and Astrophysic

    The four-populations model: a new classification scheme for pre-planetesimal collisions

    Full text link
    Within the collision growth scenario for planetesimal formation, the growth step from centimetre sized pre-planetesimals to kilometre sized planetesimals is still unclear. The formation of larger objects from the highly porous pre-planetesimals may be halted by a combination of fragmentation in disruptive collisions and mutual rebound with compaction. However, the right amount of fragmentation is necessary to explain the observed dust features in late T Tauri discs. Therefore, detailed data on the outcome of pre-planetesimal collisions is required and has to be presented in a suitable and precise format. We propose and apply a new classification scheme for pre-planetesimal collisions based on the quantitative aspects of four fragment populations: the largest and second largest fragment, a power-law population, and a sub-resolution population. For the simulations of pre-planetesimal collisions, we adopt the SPH numerical scheme with extensions for the simulation of porous solid bodies. By means of laboratory benchmark experiments, this model was previously calibrated and tested for the correct simulation of the compaction, bouncing, and fragmentation behaviour of macroscopic highly porous silica dust aggregates. It is shown that previous attempts to map collision data were much too oriented on qualitatively categorising into sticking, bouncing, and fragmentation events. We show that the four-populations model encompasses all previous categorisations and in addition allows for transitions. This is because it is based on quantitative characteristic attributes of each population such as the mass, kinetic energy, and filling factor. As a demonstration of the applicability and the power of the four-populations model, we utilise it to present the results of a study on the influence of collision velocity in head-on collisions of intermediate porosity aggregates.Comment: 14 pages, 11 figures, 5 tables, to be published in Astronomy and Astrophysic

    Local electronic structure of the peptide bond probed by resonant inelastic soft X-ray scattering.

    Get PDF
    The local valence orbital structure of solid glycine, diglycine, and triglycine is studied using soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS) maps, and spectra calculations based on density-functional theory. Using a building block approach, the contributions of the different functional groups of the peptides are separated. Cuts through the RIXS maps furthermore allow monitoring selective excitations of the amino and peptide functional units, leading to a modification of the currently established assignment of spectral contributions. The results thus paint a new-and-improved picture of the peptide bond, enhance the understanding of larger molecules with peptide bonds, and simplify the investigation of such molecules in aqueous environment

    Statistical mechanics of Floquet systems: the pervasive problem of near degeneracies

    Full text link
    The statistical mechanics of periodically driven ("Floquet") systems in contact with a heat bath exhibits some radical differences from the traditional statistical mechanics of undriven systems. In Floquet systems all quasienergies can be placed in a finite frequency interval, and the number of near degeneracies in this interval grows without limit as the dimension N of the Hilbert space increases. This leads to pathologies, including drastic changes in the Floquet states, as N increases. In earlier work these difficulties were put aside by fixing N, while taking the coupling to the bath to be smaller than any quasienergy difference. This led to a simple explicit theory for the reduced density matrix, but with some major differences from the usual time independent statistical mechanics. We show that, for weak but finite coupling between system and heat bath, the accuracy of a calculation within the truncated Hilbert space spanned by the N lowest energy eigenstates of the undriven system is limited, as N increases indefinitely, only by the usual neglect of bath memory effects within the Born and Markov approximations. As we seek higher accuracy by increasing N, we inevitably encounter quasienergy differences smaller than the system-bath coupling. We therefore derive the steady state reduced density matrix without restriction on the size of quasienergy splittings. In general, it is no longer diagonal in the Floquet states. We analyze, in particular, the behavior near a weakly avoided crossing, where quasienergy near degeneracies routinely appear. The explicit form of our results for the denisty matrix gives a consistent prescription for the statistical mechanics for many periodically driven systems with N infinite, in spite of the Floquet state pathologies.Comment: 31 pages, 3 figure

    A Supersymmetric D4 Model for mu-tau Symmetry

    Full text link
    We construct a supersymmeterized version of the model presented by Grimus and Lavoura (GL) in [1] which predicts theta_{23} maximal and theta_{13}=0 in the lepton sector. For this purpose, we extend the flavor group, which is D4 x Z2^{(aux)} in the original model, to D4 x Z5. An additional difference is the absence of right-handed neutrinos. Despite these changes the model is the same as the GL model, since theta_{23} maximal and theta_{13}=0 arise through the same mismatch of D4 subgroups, D2 in the charged lepton and Z2 in the neutrino sector. In our setup D4 is solely broken by gauge singlets, the flavons. We show that their vacuum structure, which leads to the prediction of theta_{13} and theta_{23}, is a natural result of the scalar potential. We find that the neutrino mass matrix only allows for inverted hierarchy, if we assume a certain form of spontaneous CP violation. The quantity |m_{ee}|, measured in neutrinoless double beta decay, is nearly equal to the lightest neutrino mass m3. The Majorana phases phi1 and phi2 are restricted to a certain range for m3 < 0.06 eV. We discuss the next-to-leading order corrections which give rise to shifts in the vacuum expectation values of the flavons. These induce deviations from maximal atmospheric mixing and vanishing theta_{13}. It turns out that these deviations are smaller for theta_{23} than for theta_{13}.Comment: 19 pages, 4 figure

    Mutual independence of critical temperature and superfluid density under pressure in optimally electron-doped superconducting LaFeAsO1x_{1-x}Fx_{x}

    Get PDF
    The superconducting properties of LaFeAsO1x_{1-x}Fx_{x} in conditions of optimal electron-doping are investigated upon the application of external pressure up to 23\sim 23 kbar. Measurements of muon-spin spectroscopy and dc magnetometry evidence a clear mutual independence between the critical temperature TcT_{c} and the low-temperature saturation value for the ratio ns/mn_{s}/m^{*} (superfluid density over effective band mass of Cooper pairs). Remarkably, a dramatic increase of 30\sim 30 % is reported for ns/mn_{s}/m^{*} at the maximum pressure value while TcT_{c} is substantially unaffected in the whole accessed experimental window. We argue and demonstrate that the explanation for the observed results must take the effect of non-magnetic impurities on multi-band superconductivity into account. In particular, the unique possibility to modify the ratio between intra-band and inter-bands scattering rates by acting on structural parameters while keeping the amount of chemical disorder constant is a striking result of our proposed model.Comment: 8 pages (Main text: 5 pages. Paper merged with supplemental information), 5 figure
    corecore