11,158 research outputs found

    Some mechanisms for a theory of the reticular formation Final report, 15 Nov. 1965 - 14 Nov. 1966

    Get PDF
    Nonlinear, probabilistic hybrid computer concepts for specifying operational schemata of central nervous system model

    Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance

    Get PDF
    We proposed three swing leg control policies for spring-mass running robots, inspired by experimental data from our recent collaborative work on ground running birds. Previous investigations suggest that animals may prioritize injury avoidance and/or efficiency as their objective function during running rather than maintaining limit-cycle stability. Therefore, in this study we targeted structural capacity (maximum leg force to avoid damage) and efficiency as the main goals for our control policies, since these objective functions are crucial to reduce motor size and structure weight. Each proposed policy controls the leg angle as a function of time during flight phase such that its objective function during the subsequent stance phase is regulated. The three objective functions that are regulated in the control policies are (i) the leg peak force, (ii) the axial impulse, and (iii) the leg actuator work. It should be noted that each control policy regulates one single objective function. Surprisingly, all three swing leg control policies result in nearly identical subsequent stance phase dynamics. This implies that the implementation of any of the proposed control policies would satisfy both goals (damage avoidance and efficiency) at once. Furthermore, all three control policies require a surprisingly simple leg angle adjustment: leg retraction with constant angular acceleration

    The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments

    Full text link
    The growth processes from protoplanetary dust to planetesimals are not fully understood. Laboratory experiments and theoretical models have shown that collisions among the dust aggregates can lead to sticking, bouncing, and fragmentation. However, no systematic study on the collisional outcome of protoplanetary dust has been performed so far so that a physical model of the dust evolution in protoplanetary disks is still missing. We intend to map the parameter space for the collisional interaction of arbitrarily porous dust aggregates. This parameter space encompasses the dust-aggregate masses, their porosities and the collision velocity. With such a complete mapping of the collisional outcomes of protoplanetary dust aggregates, it will be possible to follow the collisional evolution of dust in a protoplanetary disk environment. We use literature data, perform own laboratory experiments, and apply simple physical models to get a complete picture of the collisional interaction of protoplanetary dust aggregates. In our study, we found four different types of sticking, two types of bouncing, and three types of fragmentation as possible outcomes in collisions among protoplanetary dust aggregates. We distinguish between eight combinations of porosity and mass ratio. For each of these cases, we present a complete collision model for dust-aggregate masses between 10^-12 and 10^2 g and collision velocities in the range 10^-4 to 10^4 cm/s for arbitrary porosities. This model comprises the collisional outcome, the mass(es) of the resulting aggregate(s) and their porosities. We present the first complete collision model for protoplanetary dust. This collision model can be used for the determination of the dust-growth rate in protoplanetary disks.Comment: accepted by Astronomy and Astrophysic

    Effects of a β-andrenergic agonist on growth performance, body composition and nutrient retention in finishing pigs fed normal or low amounts of protein

    Get PDF
    In earlier studies with pigs the P-adrenergic agonist Ro 16·8714 ((3-AG) enhanced the efficiency of nitrogen (N) retention. Therefore effects of Ro 16·8714 were studied on growth rate, body composition, N, fat and energy retention in pigs fed isoenergetically, but given different amounts of protein (112 or 138 g/kg diet) without (groups LP and NP) or with 60 mg Ro 16·8714 per kg diet (groups LPP and NPP) from 60 to 100 kg live weight. Weight gain (898, 927, 855 and 810 g/day in NP, NPp, LP and LPp) decreased, whereas food: gain ratio (2·94, 2·82, 3·04 and 3·24 kg/kg in NP, NPP, LP and LPP) was increased by low protein intake (P 0·05) whereas the efficiency of energy retention was not influenced by Ro 16·8714 and protein intake. In conclusion, an adequate intake of protein is necessary for optimum expression of many, but not all, effects of the P-adrenergic agonist Ro 16·871

    Crossing barriers in planetesimal formation: The growth of mm-dust aggregates with large constituent grains

    Full text link
    Collisions of mm-size dust aggregates play a crucial role in the early phases of planet formation. We developed a laboratory setup to observe collisions of dust aggregates levitating at mbar pressures and elevated temperatures of 800 K. We report on collisions between basalt dust aggregates of from 0.3 to 5 mm in size at velocities between 0.1 and 15 cm/s. Individual grains are smaller than 25 \mum in size. We find that for all impact energies in the studied range sticking occurs at a probability of 32.1 \pm 2.5% on average. In general, the sticking probability decreases with increasing impact parameter. The sticking probability increases with energy density (impact energy per contact area). We also observe collisions of aggregates that were formed by a previous sticking of two larger aggregates. Partners of these aggregates can be detached by a second collision with a probability of on average 19.8 \pm 4.0%. The measured accretion efficiencies are remarkably high compared to other experimental results. We attribute this to the rel. large dust grains used in our experiments, which make aggregates more susceptible to restructuring and energy dissipation. Collisional hardening by compaction might not occur as the aggregates are already very compact with only 54 \pm 1% porosity. The disassembly of previously grown aggregates in collisions might stall further aggregate growth. However, owing to the levitation technique and the limited data statistics, no conclusive statement about this aspect can yet be given. We find that the detachment efficiency decreases with increasing velocities and accretion dominates in the higher velocity range. For high accretion efficiencies, our experiments suggest that continued growth in the mm-range with larger constituent grains would be a viable way to produce larger aggregates, which might in turn form the seeds to proceed to growing planetesimals.Comment: 9 pages, 20 figure

    A quantum protocol for cheat-sensitive weak coin flipping

    Full text link
    We present a quantum protocol for the task of weak coin flipping. We find that, for one choice of parameters in the protocol, the maximum probability of a dishonest party winning the coin flip if the other party is honest is 1/sqrt(2). We also show that if parties restrict themselves to strategies wherein they cannot be caught cheating, their maximum probability of winning can be even smaller. As such, the protocol offers additional security in the form of cheat sensitivity.Comment: 4 pages RevTex. Differs from the journal version only in that the sentences: "The ordering of the authors on this paper was chosen by a coin flip implemented by a trusted third party. TR lost." have not been remove

    The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier

    Full text link
    The sticking of micron sized dust particles due to surface forces in circumstellar disks is the first stage in the production of asteroids and planets. The key ingredients that drive this process are the relative velocity between the dust particles in this environment and the complex physics of dust aggregate collisions. Here we present the results of a collision model, which is based on laboratory experiments of these aggregates. We investigate the maximum aggregate size and mass that can be reached by coagulation in protoplanetary disks. We model the growth of dust aggregates at 1 AU at the midplane at three different gas densities. We find that the evolution of the dust does not follow the previously assumed growth-fragmentation cycles. Catastrophic fragmentation hardly occurs in the three disk models. Furthermore we see long lived, quasi-steady states in the distribution function of the aggregates due to bouncing. We explore how the mass and the porosity change upon varying the turbulence parameter and by varying the critical mass ratio of dust particles. Particles reach Stokes numbers of roughly 10^-4 during the simulations. The particle growth is stopped by bouncing rather than fragmentation in these models. The final Stokes number of the aggregates is rather insensitive to the variations of the gas density and the strength of turbulence. The maximum mass of the particles is limited to approximately 1 gram (chondrule-sized particles). Planetesimal formation can proceed via the turbulent concentration of these aerodynamically size-sorted chondrule-sized particles.Comment: accepted for publication in A&

    The four-populations model: a new classification scheme for pre-planetesimal collisions

    Full text link
    Within the collision growth scenario for planetesimal formation, the growth step from centimetre sized pre-planetesimals to kilometre sized planetesimals is still unclear. The formation of larger objects from the highly porous pre-planetesimals may be halted by a combination of fragmentation in disruptive collisions and mutual rebound with compaction. However, the right amount of fragmentation is necessary to explain the observed dust features in late T Tauri discs. Therefore, detailed data on the outcome of pre-planetesimal collisions is required and has to be presented in a suitable and precise format. We propose and apply a new classification scheme for pre-planetesimal collisions based on the quantitative aspects of four fragment populations: the largest and second largest fragment, a power-law population, and a sub-resolution population. For the simulations of pre-planetesimal collisions, we adopt the SPH numerical scheme with extensions for the simulation of porous solid bodies. By means of laboratory benchmark experiments, this model was previously calibrated and tested for the correct simulation of the compaction, bouncing, and fragmentation behaviour of macroscopic highly porous silica dust aggregates. It is shown that previous attempts to map collision data were much too oriented on qualitatively categorising into sticking, bouncing, and fragmentation events. We show that the four-populations model encompasses all previous categorisations and in addition allows for transitions. This is because it is based on quantitative characteristic attributes of each population such as the mass, kinetic energy, and filling factor. As a demonstration of the applicability and the power of the four-populations model, we utilise it to present the results of a study on the influence of collision velocity in head-on collisions of intermediate porosity aggregates.Comment: 14 pages, 11 figures, 5 tables, to be published in Astronomy and Astrophysic

    Resonant Processes in a Frozen Gas

    Full text link
    We present a theory of resonant processes in a frozen gas of atoms interacting via dipole-dipole potentials that vary as r3r^{-3}, where rr is the interatomic separation. We supply an exact result for a single atom in a given state interacting resonantly with a random gas of atoms in a different state. The time development of the transition process is calculated both on- and off-resonance, and the linewidth with respect to detuning is obtained as a function of time tt. We introduce a random spin Hamiltonian to model a dense system of resonators and show how it reduces to the previous model in the limit of a sparse system. We derive approximate equations for the average effective spin, and we use them to model the behavior seen in the experiments of Anderson et al. and Lowell et al. The approach to equilibrium is found to be proportional to exp(γeqt\exp (-\sqrt{\gamma_{eq}t}), where the constant γeq\gamma _{eq} is explicitly related to the system's parameters.Comment: 30 pages, 6 figure
    corecore