x
3
C. SOME MECHANISMS FOR A THEORY
by
W. L. Kilmer
W. S. McCulloch
J. Blum

Division of Engineering Research Michigan State University East Lansing, Michigan February 2 , 1967

SOME MECHANISMS FOR A THEORY

OF THE RETICULAR FORMATION

by W. L. Kilmer, ${ }^{1}$ W. S. McCulloch, ${ }^{2}$ and J. Blum ${ }^{3}$

The major portion of this work was supported by the AFOSR, administered through Michigan State University. Support was also given by the following: Air Force Office of Scientific Research Grant AF-AFOSR-1023-66 through Michigan State University; DSR Project 55-257, sponsored by the Bioscience Division of Nationat Aeronautics and Sjpace Administration, Contract NSR 22-009-138 throunh the Massachusetts Institute of Technology- Instrumentation Laboratory; the National Institutes of Health Grant NB-04985-03 through the Massachusetts Institute of Technology; U. S. Air Force (Research and Technology Division) Contract AF33(615)-1747 through the Massachusetts Institute of Technology; and the Teagle Foundation Inc., through the Massachusetts Institute of Technology.

[^0]TABLE OF CONTENTS
Page

1. Introduction 1
2. Neurophysiology and Neuroanatomy of the RF 8
3. Logical Requirements of the Theory 15
4. The Present Model 18
5. Simulation Results 35
6. Form-Function Relations for S-RETIC 39
7. Conclusions and Future Work. 47
8. Bibliography 51
Appendix 1. Convergence on a Model Al-1
Appendix 2. $\quad \gamma_{k}$ Function Table A2-1
Appendix 3. Some $\sigma_{i} ; F, C, \gamma_{i}$ Relationships for E. A3-1
Appendix 4. $\quad \gamma_{j}$ - to $-M_{i}$ Connection Table. A4-1
Appendix 5. Exemplary $\left\{\gamma_{i}\right\}$, $\overrightarrow{\mathrm{p}}^{\prime}$ Table ($6^{\text {th }} \mathrm{M}_{\mathrm{i}}$) A5-1
Appendix 6. The Preparation Scheme for Appendix 5 A6-1
Appendix 7. $\quad M_{i}$ - to $-M_{j}$ Connection Table A7-1
Appendix 8. Distribution of the $|i-j|$ in the $M_{i}-$ to $-M_{j}$ Connection Table A8-1
Appendix 9. Simulation Results A9-1
Appendix 10. Flow Chart of Program A10-1

Abstract

Throughout the life of the vertebrates, the core of the central nervous system, sometimes called the reticular formation, has retained the power to commit the whole animal to one mode of behavior rather than another. Its anatomy, or wiring diagram, is fairly well known, but to date no theory of its circuit action has been proposed that could possibly account for its known performance. Its basic structure is that of a string of similar modules, wide but shallow in computation everywhere, and connected not merely from module to adjacent module, but by long jumpers between distant modules. Analysis of its circuit actions heretofore proposed in terms of finite automata or coupled nonlinear oscillators has failed.

We propose a radical set of nonlinear, probabilistic hybrid computer concepts as guidelines for specifying the operational schemata of the above modules. Using the smallest numbers and greatest simplifications possible, we arrive at a reticular formation concept consisting of 12 anastomaticallycoupled modules stacked in columnar array. A simulation test of its behavior shows that despite its 800-line complexity, it still behaves as an integral unit, rolling over from stable mode to stable mode according to abductive logical principles, and as directed by its succession of input 60-tuples.

Our concept employs the following design strategies: modular focusing of input inforination; modular decoupling under input changes; modular redundancy of potential command (modules having the most information have the most authority); and recruitment and inhibition around reverbe ratory loops. Presently we are augmenting these strategies to enable our model to condition, habituate, generalize, discriminate, predict, and generally follow a changing environment.

Our program is epistemological. We are trying to develop reticular formation concepts which are complex, precise, and valid enough to inspire reasonable experiments on the functional organization of this progenitor of all vertebrate central nervous tissues.

SOME MECHANISMS FOR A THEORY OF THE RETICULAR FORMATION

1. INTRODUCTION

Throughout the vertebrate phylum, the reticular formation ($R F$) is the nervous center which does most to integrate the complex of sensorymotor and autonomic-nervous signals, thereby permitting organisms to function as units instead of mere collections of organs. The RF consists generally of the nervous core of the spinal cord, with bulges in higher animals in the lower spinal (lumbar) region, and in regions corresponding to the neck and brain stem areas of man (see Figure l). In the highest vertebrates it comprises about $1 / 1000$ th of the central nervous system. The RF receives relatively unrefined information from all sensory-motor systems which link the organism to its environment (visual, auditory, vestibular, etc.) and from all internal housekeeping systems which insure the organism's internal well-being (visceral, cardiovascular, respiratory, etc.). Its primary task, somewhat oversimplified, is to commit the organism to either one or another of 20 or so, but less than 30 , gross modes of behavior -- e.g., run, fight, sleep, vomit -- as a function of the nerve impulses that have played in upon it during the last fraction of a second. It also sends out control directives to all other more specialized nerve centers so that they in turn can behave in an integrated, coherent manner.

In higher vertebrates, many variations on the central modal themes of behavior are mediated through a profusion of other brain regions. The RF interacts with the highest of these regions primarily through the thalamus, the information anteroom of the higher brain, by dictating what kind of functions the cerebrum is to compute on its input sensory, autonomic, and mnemonic information. We call this "function setting." The RF also tunes filters in sensory input pathways to rough-focus the organism's overall attention; it modulates motor output signals; it sets zero points in reflex servo and homeostatic feedback loops; it controls the organism's sleepwaking cycle and postural substratum; it participates with the hypothalamus in the regulation of vegetative activities; etc.

But the RF does not do everything. For we note that though decerebrate adult cats ${ }^{8}$ can distinguish between tones, they cannot between tunes; and though they can see brightness and respond appropriately to simple moving forms, they apparently are devoid of all refined visual perception. Neither do they orient well to bodily touch, cold, pressure, or shock stimuli. Their movements are impoverished and highly stereotyped; they are modal. They lie, sit, stand, walk, run, fight, surrender, sleep, eat, drink, vomit, defecate, micturate, and mate. Their stalking, pouncing, directed cuffing, skillful playing, and other such activities, are essentially gone. They are stimulus bound with no capacity for long-range intentions or complex problem-solving. What they have left of their nervous system is too busy trying to keep them alive for that. They are able only to cope with the most urgent and important stimulus contingencies, because they must in their natural domain retain as much of their quick response capability as possible, and it takes all the neural circuitry they have left to do it.

If the behavior of decerebrate cats means what we think, the RF in its natural milieu is certainly not a refined, precise, articulate, or temporallymsophisticated mechanism by whole-brain standards. It is far more integrative than analytical, and far more comprehensive than apprehensive. ${ }^{34}$ Yet one must not delude himself on this head. For even cockroach ganglia, consisting of only about 1000 primitive neurons, can adaptively sort out 29 from 30 pulse signal bursts ${ }^{45}$ and the $R F$ is by all measures a wizard compared to one cockroach ganglion.
P. Wall ${ }^{121}$ has noted that RFs in experimental cats always seem to have a preferential set point instead of constantly and gradually passing from level to level. P. Dell ${ }^{24}$ has discussed the functional stability of RFs in terms of their homeostatic tendency to eliminate input disturbances through corrective effector actions and by resetting input-filter operating points. Sometimes the corrective actions are neural load adjustments, such as bulbar RF elevation of arterial pressure through neurohumoral secretion, or reticulo-cortico-reticular depression of neural activity through feedback regulation. At other
times the corrective actions involve CO_{2} or O_{2} induced changes in RF neural activity in both ongoing and recruitable (in emergencies) respiratory centers, or involve selective inhibition of some groups of interneurons (intermediate diagastric jaw-opening neurons, for example) with compensating facilitation of others (masseter jaw-closing motoneurons, for example). The latter often causes a drastic alteration of the cortical fractionation of reflex actions. It can also switch out one group or afferent pathways to a neural center and switch in another. Wall and Dell's homeostatic observations further corroborate our mode concept of RF function.

Let us try to develop our notion of what the RF does in another way. At the millipede state of evolution, the RF is essentially the entire central nervous system. By the pigeon stage, it has grown, or separated out, several comparatively specialized computers for making finer discriminations between sensory stimuli and for computing more precise motor control signals, than it could possibly produce by itself and still maintain its fast-acting overall command and control function. Chief among these specialized computers are the visual, vestibular, bodilysensory, and auditory systems, and the cerebellum to compute precise auto-correlations for actions of the pigeon on the pigeon and the pigeon on its world (as required for pecking, control in flight, etc.). The pigeon RF has also evolved specialized basal ganglionic mechanisms for programming its associated bodily movements (required for running, fighting, feeding, mating, etc.); a set of well localized feedback paths, called simple reflexes; and a set of regenerative nerve loops for controlling various types of internal rhythms (cardiovascular, respiratory, digestive, etc.). But it is still clear, especially from the work of Lorenz and his school, that the pigeon, sea gull, goose, and other organisms of that evolutionary rank behave in a nearly modal fashion.

By the human stage of evolution, the RF has grown a cortical mantle over the rest of its phylogenetically older structures. These older structures, when left by themselves, are only concerned with the rather more immediate preservation of the individual and its species. ${ }^{57,58}$ But in humans, with their additional cortex, we find new and different
types of functions, like language; we also find that the behavioral influences of many of the older functions, like anger, are greatly modified, and that an enlarged frontal lobe has mushroomed the development of long-range judgement, sophisticated attitudes, and deliberative purposes in the organism. 116 We find, too, that the visual, auditory, bodily-sensory, and motor outflow computers are larger and more intricate than ever. But, for all the RF's reliance on the discriminatory, associational, memory, abstractional, computing, and programming powers of the cortex, it apparently has never relinquished its central command function to the cortex. The evidence for this is both anatomical and physiological. Only the RF has a wealth of direct or monosynaptic connections to and from all other central nervous structures. ${ }^{81,89}$ Only the RF is able to arouse, put to sleep, and turn off (over-ride in a crisis) the rest of the entire forebrain. ${ }^{70}$ And only the RF has the position and connectivity to possibly make computations wide enough (of sufficient scope) and shallow enough (in logical depth) to always arrive at good gross modal (integrative) decision within a fraction of a second, given the requisite information. * Our modal command concept of the RF is not incompatible with the amodal behavior of orchestra pianists, or active and learning cats that have almost completely ablated RFs, or incinerated martyr priests, or such things as the men of New Hebrides jumping head-first off 50 -foot towers only to be stopped 3 inches from the ground by thongs tied around their ankles. It is true these things pose some problems for our development. The martyr-priests and tower jumpers operate under extreme cortical "control" of the RF. The violated cats dramatically demonstrate the neurological dictum that brains concentrate first, with whatever equipment they might have left, on staying alive. In this sense, no brain region is totally sacrasanct with respect to any major brain function. The pianists demonstrate just how nonmodal cortically modulated behavior can get. With this, let us delve a little more deeply into the relations between brain regions that these examples imply.

[^1]Just as the commander of a fleet might have to plunge his ships into destruction in order to achieve a mission formulated by his mission control office, the RF might also have to act analogously in relation to some specialized brain agency it begot. For the RF must trust and listen to other brain centers just as a fleet commander must trust and listen to the fleet's radar, gunnery, engine room, combat, and navigational offices. After a modal command has been issued, both animal and fleet must carry it out according to a preprogrammed set of rules, with embellishments as contingencies demand. In the martyr-priest and tower-jumping examples, the RF's command to the rest of the central nervous system is the best reconciliation of a host of conflicting demands placed upon it. On the other hand, piano playing is a cortically-mediated activity requiring the fractionation of more primitive response patterns into a special blend of precise actions. The RF permits this kind of thing, but does not command or control it (except by default). In the cat case, we see that animals can survive massive RF lesions, animate, and even condition after them. This is because brain functions can migrate, given the necessity, time, and a decent anatomical chance, in order to get their primary jobs done. Similarly, if the conductor of an orchestra passes out, a front row instrumentalist can take charge, but usually only at considerable cost to the orchestra's quality of performance.

The RF is thus "general" -- or in classical Greek terminology, "first, " -. in the brain. Its relation to other brain structures recalls the Biblical passage, "...but whoever would be great among you must be your servant, and whoever would be first among you must be your slave."

Now consider the RF, minus everything on its input side (generally speaking the dorsolateral regions), its output side (ventral-lateral RF, basal ganglia, etc.), all of its local reflexes, and all of its respiratory and other rhythmic operational aspects which are functionally separable from its main decisionary tasks. Denote what is left RF.* The task of RF* we take to be a blend of modal-commitment and function-setting activities; and the latter we take to be engendered by the former. This is the fundamental assumption of our paper. It has the greatest apparent validity at the medullary level of the $R F$. More rostrally, at the midbrain
and thalamic levels, the RF decisionary functions grade off into predominantly nonspecific (function-setting) and associational-integrative activities. Let us denote by RF* a sharply modal idealization of RF*'s functions. RF* will be the object of our study from here on, and we will regard it as at least a promising theoretical progenitor of a realistic RF* concept. We will next sketch the known RF neurophysiology and neuroanatomy, and then go on to propose a theoretical framework for RF* that we think stands a chance of being right enough and developmentally promising enough to eventually be of some use to us in understanding real RFs. What we are after first is a way to think about how RF* always arrives at an integrated modal decision in a dozen or so neural decision times instead of disagreeing among its several parts in the face of competitive or contradictory input signals. We believe that the highly characteristic $R F$ anatomy is an indispensable clue to how this is done instead of an irksome or gratuitous constraint. Some would not agree with us. They must then advance along the lines of categorical philosophy or psychology, which is not our primary interest. We want to know, after Clerk Maxwell, not only the go of our mechanism, but the particular go of it.

The magnitude of our problem is signaled by some previous theoretical resuits. We know that logic nets organized along RF lines (linear arrays of finitely but unboundedly many identical descrete automata information-coupled in both directions) have probability 1 of not being able, after starting in equilibrium, to arrive at an equilibrium point in less than a bounded number of component-automaton decision times following a perturbation of inputs. 49, 50
Other results on iterated logic nets $41,47,48$ point up related difficulties in our problem. We recall the complete lack of methods to certify that coupled nonlinear oscillator manifolds would put us in any better stead on such accounts. It must be emphasized that our central difficulty hinges on the fact that we are concerned with transient or decisionary processes by which complex nonlinear decision-making systems roll over from stable mode to stable mode, and not the steady state effects in such systems (cf. Appendix l).

2. NEUR OPHYSIOLOGY AND NEUROANA TOMY OF THE RF

The Scheibels have so far done what for us is the most definitive neuroanatomy available on the RF. In their milestone paper of 1958, 93 they caricatured the anatomical structure of the lower $2 / 3$ of the RF in the brain stem by comparing it to a stack of poker chips. In each chip region the dendritic processes of $R F$ neurons ramify in the plane of the chip face, often covering nearly half of the face area. The Scheibels and Nauta ${ }^{81}$ describe the shape of RF neural dendrite arbors as primitive, neither tufted nor wavey, but consisting of long shaftlike processes whose branches are usually longer than the stem of their origin. Among dendrites of nearby neurons, there is a very large degree of overlap and intermingling, as shown schematically for the brain stem region in Figure 2. (This is very similar to Scheibels' Figure 1 in Reference 86.)

The dendritic organization of the nerve nuclei that furnish inputs to the RF is predominantly longitudinal, as seen in Figure 2b, or of a tufted or wavey character. The axons out of the se nuclei, and the axonal collateralizations out of all of the longitudinal fibre tracts that feed into the RF, turn off sharply to reach into the RF in the planes of the RF's greatest dendritic ramification. Since in this process as many as a half dozen or more different input systems may synapse on a single RF neuron, and each RF input nucleus and fibre tract in general feeds very many $R F$ cross-sectional levels, the Scheibels suggest that the RF might tolerate considerable puddling of information at each of its cross-sectional levels, but demand somewhat greater informational rigor between levels. Nauta similarly regards the $R F$ dendritic anatomy as an isodendritic matrix which serves as the structural substrate for a near-continuum of signals.

The order of magnitude of the number of RF afferents, the number of RF neurons, and the number of RF efferents, is accepted as about the same from frog to man. RF dendrites generally appear to fan out about 60° ventrally from more ventral RF cell bodies, and about 180° dorsolaterally from more dorsal RF cell bodies. All processes of more laterally situated RF neurons are in general smaller than their more medial counterparts. 117,118 Smaller RF neurons are, of course, more concerned with local operations, and larger ones, with global functions. In general,

a) RF CROSS SECTION, SHOWING DENDRITIC ORGANIZATION ON LEFT. AND INPUT ORGANIZATION ON, RIGHT.
 DENORITIC RAMIFICATION FROM NEURAL CELL BODIES, AND ORGANIZATION OF INPUT NUCLEI.
C) PORER CHIP CARICATURE OF a) AND D).

Fig. 2. Brain stem RF dendritic anatomy.
more ventral RF neurons participate more extensively in effector functions, more dorsal RF neurons in sensory functions, and more lateral RF neurons in vegetative functions.

The RF axonal anatomy corresponding to Figure 2 b is shown in Figure 3. (This drawing is essentially Scheibels' Figure 4 of Ref. 86.) In Figure 3 a characteristic RF axonal process is seen coursing its way longitudinally over a major portion of the brain stem. Collaterals branch off into other RF levels and various RF input nuclei, as well as into both corticifugal (i.e., descending) and corticipetal (i.e., ascending) neural fibre tracts. A good many RF axons also project nonspecifically* into cerebral regions, ${ }^{72-81}$ as well as directly out to the level of the first neuron in each of the sensory systems (e.g., to the retina of the eye, and to the muscles of the inner ear). ${ }^{43}$ In short, the RF sits athwart all incoming and outgoing nervous transactions carried out over the entire neuraxis, and it both samples and modulates their spatio-temporal information sequences so as to command the gross modal operation of the organism.

Essentially all that is known about the Nissel architecture of the $R F$ is that there is a full range of neural cell sizes. But neither neat circimscription of neural groups nor laminar nor other striking distributive organization is evident. This is quite opposite of those regions just outside the RF core (Nauta's definition of RF ${ }^{81}$).

Thus far no very helpful hypotheses have been developed relating the precise geometric forms and sizes of RF neurons to the type of functions they compute. In this sense, the RF is much more intractable than the frog's eye. ${ }^{56}$

Near any given RF neural cell body there may be tens of thousands of both fast conducting (100 meters $/ \mathrm{sec}$) insulated fibres and slow conducting (a few meters/sec) uninsulated fibres, but the functional significance of this has only been guessed at. We know that RF neurons characteristically

[^2]
Figure 3. RF axonal anatomy corresponding to Figure 2 dendritic anatomy.
respond to exceptionally wide ranges of neural ${ }^{10,97}$ and chemical ${ }^{23,24}$ stimuli involving perhaps several sensory and vegetative modalities. For example, in cat there are RF neurons that increase their firing rates during asphyxia, tickling of hair cells in the nose, and postural unbalance. Other RF neurons respond to visceral disorders, crude body interface phenomena (touch, pressure, and cold), and certain phases of anti-gravity bodıly kinetics; and still others to cerebral control signals, raw information from headend distance receptors (eye and ear), and signals from neuroendocrine receptors in the hypothalamus.

We know also that there is massive reticular involvement in motor outflow and attention-focusing affairs. For example, rats do not ordinarily distinguish yellow; but if they are hungry and small cheese, RF directed outflow sets up visual computations which enable them to. Also, Hernandez-Peon ${ }^{43}$ has found cochlear nucleus (auditory pathway) neurons in anesthetized cat that respond well to clicks until odorous fish is placed under the cats' nose. Thus a modal decision might well be viewed as a very broad command to attend, e.g., to running, feeding, or fighting. P. Dell has developed this notion in terms of critical (in the sense of judgement) reactivity. ${ }^{24}$

In the plastic domain, RF neurons are the first to adapt out their responses to intense but meaningless stimuli (e.g., gunfire at a shooting range), and are generally the first to show signs of conditioning to sensory indications of imminent painful stimuli. ${ }^{39,59}$ But the RF does not learn very much on a long term basis. P. Shurrager's dog whose spinal cord had been transected as a pup, learned to walk, sit, lie, copulate, and void urine and excrement with nearly the right postures and motions. A soldier will sometimes hit the dirt on hearing any loud, sharp sound for years after a long battle experience. But these are extreme cases. The RF does not usually even retain conditioning for more than about 30 minutes.

There is strong evidence to suggest that the RF can change modal commitments at a steady rate of not more than about 3 times per second (spinal reflexes, some of whose paths can be traversed in about 20 milliseconds, notwithstanding), but must be driven with pulse repetition rates of the order of a few or a few hundred per second for this to occur.

Most pulse rates at low power have very little overall effect inside RF tissue. If the RFis engaged in a significant overall decisionary activity, probably the focusing down affects following the crest of this activity persist for a minute or more. ${ }^{5}$ We conjecture that cortical perceptions (is there a lion behind that bush or not?) are produced at the rate of about ten per second, and that this is the main limiting temporal factor in those cortico-reticular exchanges that primarily concern modal decisions. We note that humoral and hormonal rhythms, with periods of hours, days, months, and years, can have a great effect on the overall sensitivity and set of a RF.

We understand something of how vertebrate organisms take habits and conduct their neuronal affairs at the reticular level. It has remained the same from shark and lamprey to man. ${ }^{81}$ But we know essentially nothing about the kinds of spatio-temporal information codes that RF employs to cope with its horrendous intrareticular communication and computation problem. Granted, there is some signal channeling as a function of pulse repetition rate that has often been noted experimentally. ${ }^{32}$ And a good deal of recent spike interval histogram ${ }^{119}$ and noise power work ${ }^{120}$ has reinforced the old belief that much neural processing must be statistical. Also Lettvin, McCulloch, and co-workers have demonstrated how single neurons could compute any logical function of their inputs, indicating that the action potential's all-or-none character is not accidental. But RF spike waveshapes have been reported to often have very long trailing edges (up to 10 ms) ${ }^{97}$ neural-glial field effects figure ever more prominently in RF operation; ${ }^{2}$ and RF biophysico-biochemical parameters are continaully outcropping as possible distributed RF operating conditions. 2,23 So all is not combinatory logic, anatomical pathways, and statistical pulse frequency processing either. In a different vein, we can neither imagine how, nor whether, RF input information fractionates into small, coherent, more or less loosely coupled Hebbsian assemblies that intermingle to realize associative, cooperative, and intergrative decisionary behavior.

In the European newt, only the RF can regenerate the rest of the whole brain. Thus in some sense, it knows what it needs to help it run the organism in which it resides. In the newborn, the RF is mature whereas the rest of the forebrain is not. Apparently, give or take a few
lesions, the $R F$ is the sine qua non of viability whereas the other brain regions are not -- at least early in life. These facts shed light on reticular relations with other brain regions, but disappointingly little on intrareticular operation.

In summary, a good deal is known about the $R F^{\prime}$ input and output systems, and something about its neurobiology, Much is lacking on the detailed connection patterns between the various neural types, and their counts with cnanges of position. Practically nothing is known about how RF inputs start appropriate computations racing up and down the net so as to always yield effectively unanimous decisions for modal command signals.

We are convinced that if the RF is ever to be really understood, we must have a theoretical model that will enable us to intuit from it logically sophisticated experiments of sufficient cybernetic dimensionality and complexity to take into account those differences which make a difference. N one-dimensional experiments can never take the place of one N -dimensional experiment in a thoroughly N -dimensional system.

3. LOGICAL REQUIREMENTS OF THE THEORY

First of all, we must understand what kind of logic the RF* described in our introduction performs. C. S. Pierce called it the logic of relations, but for its clearest statement we go straight to the father of modern biology, Aristotle. He described three kinds of logic: deductive, inductive, and abductive. RF* does the latter. Its scheme is to go from the facts and a rule to a case, i.e., the facts of sensory and internal perception as represented over the $R F$ input channels, and a rule for classifying these facts by an overall computational scheme; to a case of the form: the input is X and this implies action mode Y .

An organism's RF case structure is always the result of its evolutionary, developmental, and experiential heritage.

Computer theorists generally think of deductive, inductive, and abductive logic as follows:
deductive logic ~ execution of a given program
inductive logic \sim generation of a new program during a training period such that the new program can produce a proper output given any input closely related to one in the training set.
abductive logic ~ selection of the appropriate program from a repertoire in accordance with a rule for analyzing program requests. Since these program requests can be made in any form -e. g., in natural language -- in general a calculus of n-adic intentional relations is needed for the analysis.

After each new modal decision, $R F$ * keys the proper output program, and from then on as far as it is concerned everything follows in a completely deductive manner. (For example, the programmed output of the basal ganglia throws its keyed signal sequences for walking down over the interlocked entrainments of nerve centers in the arms and legs, and they in turn embellish the details of the orders given them as the contingencies of rough terrain, etc., demand; and so on out to the periphery,
where the effector signals are transformed into smooth and complicated actions.)

Doubtiess RF* never computes single modal decisions directly, but rather their half-center representations. To illustrate, Figure 4 shows the half-center dimensions for the lumbar enlargement of a dog. The advantage of such a representation is that for n dimensions, a single 2^{n}-valued function can be replaced by n two-(or sometimes more) valued functions.

Conditioning, habituation, and long-term learning in the $R F$ require only inductive logic in principle, and quite probably at this stage are best studied in cortex.

Figure 4. Half-center dimensions for lumbar RF of dog. (Note: Heavy lines show dimensions.)

4. THE PRESENT MODEL

This section describes our present RF* model, which we denote S-RETIC. It is a caricature of the poker chip analogy for the brain stem RF, and was constructed to be as simple as possible without violating our intuitive notion of what RF operation is like.

In the model we replace adjacent groups of the Scheibels' approximately l00-micra-thick poker chip regions by single modules which contain nonlinear, probabilistic hybrid computers. We require that all modules in the resulting columnar array be similar and operate on the same synchronous time scale. The modules are interconnected to a degree and in a way suggested by the known RF axonal anatomy. The anatomy is also the guide in specifying external S-RETIC inputs to each of the modules.

The plan is somewhat different on the S-RETIC output side. Since it is mainly the computational structure of single RF modal decisions that we are interested in, each of the S-RETIC modules is given only direct mode-indicator outputs. We assume that the effects of each S-RETIC mode change show up at some later time over S-RETIC's input lines. This departs from RF biology in that our S-RETIC outputs have no direct way of influencing the supposed organism's input and output systems which feed it. Such an overall-output approach seems justified by results like Doty's, ${ }^{28}$ which show that even brain stem swallowing motoneurons "seem to have an unpredictable and random pattern from one swallow to the next, though the overall schedule of excitation and inhibition among the participating muscles in highly constant."

Figure 5 shows a reduced schematic of S-RETIC. All σ_{i} and γ_{i} lines are binary (an arbitrary but convenient basis of information coding); the M_{i} are S-RETIC's poker-chip logic modules; the S_{i} correspond to the various humoral, chemoreceptive, and exteroceptive and interoceptive sensory and internuncial systems that feed inputs directly into the RF; the Ω_{i} (only Ω_{7} shown) are the modular mode-indicating output lines; and the upper and lowe r boundaries, T and B, correspond roughly to the midbrain and high cervical regions of the higher vertebrates, respectively. For clarity each type of connection appears in Figure 5 only once, whereas actually the connection types proximate to M_{7} recur at all corresponding

similar locations over the entire figure. Thus, if a connection type diverges from or converges to one or a group of S_{j} or M_{i} in Figure 5, it does likewise at every corresponding similar location in S-RETIC. Each M_{i}, then, receives inputs from several but not all S_{j}, and each S_{j} feeds several but not all M_{i}. Each M_{i} feeds information directly to several but not all other M_{i}, and receives information directly from several but not all other M_{j}.

The $M_{i}-$ to $-M_{j}$ connections are arranged so that, in general, modules close together are information-coupled more closely than modules far apart. This is in line with the neuroanatomy. Similar restrictions are also all that govern the terminal distributions of the A and C bundles, though the anatomy of Nauta and Brodal suggests that somewhat more patterning and specificity than this exists in the real RF. The S_{j} output and M_{i} ascending and descending bundle sizes are delimited to 5,4 , and 4 , respectively; and the degrees of $S_{j}-t o-M_{i}$ fan-in and fan-out are delimited as suggested by the RF input anatomy (involving nuclear regions, fibre tracts, and more localized lateral reticular structures). The precise nature of these delimitations is suggested in Figure 5, and is specified in detail in Appendix 4. The specification was made with the intention of imposing fairly even "use" distributions on the γ_{i} and σ_{i}. The corresponding γ_{i} connection relations are important because the information on the se lines should be highly but nontrivially correlated, with the degree of correlation between each pair of γ_{i} determining their proximity in the $\gamma_{11}, \ldots, \gamma_{42}$ ordering. The γ_{i} are realizations of all 42 symmetric switching functions of the form $\left(\sigma_{i} \wedge \sigma_{j}\right) \vee\left(\sigma_{j} \wedge \sigma_{k}\right) \vee\left(\sigma_{k} \wedge \sigma_{i}\right)$, with i, j, and k pairwise different, $\mathrm{i}, \mathrm{j}, \leq 7$, and $\mathrm{k}=8$ or $9 . *$ (Cf. Appendix 2 for tabulation of functions.) This keeps the percentage of $1^{\prime} s$ on the $\gamma_{i}{ }^{\prime} s$ about the same as that on the $\sigma_{i}{ }^{\text {t }}$ (cf. Appendix 3 for details), and preserves some useful distance properties in the passage from σ_{i} to γ_{i} signal sets. The $M_{i}-$ to- M_{j} connections are made randomly so that the probability of a direct M_{i}-to M_{j} connection is inversely proportional to the absolute magnitude of the square root of (i-j). (Cf. Appendices 7 and 8 for connection table and details.) Σ and E in Figure 5 are thus included only to simulate an RF environment that engenders input signals from a covarying world. (For example, if a runaway car stops abruptly at a wall at the bottom of
a hill, a witness is likely to hear a crash. His visual and auditory pathways then transmit correspondingly covariant signals into his reticular formation.)

Before discussing the details of the M_{i} in Figure 5, we note that RF biology recommends to our use the following M_{i} input design strategy, which not so incidentally is aligned with Leibnitz's notion of the diversified monad ${ }^{55}$ (especially for $\left\{\sigma_{i}\right\},\left\{\gamma_{i}\right\},\left\{\gamma_{i}\right\}$, and $\left\{M_{i}\right\}$ set sizes of over $50,1000,50$, and 100, respectively, which is more like what we are really thinking of anyway. We chose the small numbers $9,42,5,12$, because they were the smallest we thought wecould get away with without completely violating our $R F *$ concept). Each M_{i} of S-RETIC should receive a selection of γ_{i} inputs which just enables it to get a good picture, or relatively high resolution view, of the signal state in a certain small portion of the Σ bundle, but which only permits it a progressively poorer picture of the signal state in portions of the Σ bundle more outlying from its "area centralis." This makes each M_{i} both a generalist and a specialist. If each were only a generalist, S-RETIC would not be able to discriminate well enough. If each were only a specialist, S-RETIC would not be able to piece together a good global decision; in addition if any M_{i} should fail, the overall system would go totally blind in some Σ area, and that should never happen in an RF* system.

Figure 6 depicts the essentials of our notion. Over a cross-section of the Σ bundle, the M_{i} for which the figure was drawn derives from its γ_{i} inputs exactly k units of information on the signal states of all the σ lines within each marked off area of the cross-section (A or B, for example). Area A, then, belongs to the Figure $6 M_{i}$'s area centralis, and B its peripheral low-resolution area.

The idea is to have each M_{i}^{\prime} s area centralis displaced from each other $M_{i}^{\prime \prime s}$ area centralis, but such that each point in the $\{\sigma\}$ bundle's cross section is at least near the area centralis of some M_{i}. Then each M_{i} knows something about all of S-RETIC's input affairs, so is diversified, but is a specialist on only a subset of them. This admits the necessary

[^3]

Figure 6. Basis of our module design philosophy.

S-RETIC acuity. Another important consequence of this strategy is that one can shoot holes through S-RETIC, and what's left performs with an overall decisionary acuity that is roughly proportional to the number of good M_{i} it has left. Careful checking will reveal that S-RETIC realizes the foregoing $\left\{\sigma_{i}\right\}$-to- $\left\{\gamma_{i}\right\}$-to- $\left\{M_{i}\right\}$ design strategy. (We are using a much more justifiable γ function specification than the one given here in our present work on trainable S-RETICs.)

Everywhere above, the Σ bundle does not correspond to any signal paths in the real world. But at the $\left\{\gamma_{i}\right\}$ level, there should be signal correlations of like character occurring in real world neurology over RF input pathways.

Figure 7, to be explained later, shows the scheme we chose for realizing our Figure $5 \mathrm{M}_{\mathrm{i}}$. It was inspired by the desire to realize the logic, if not the mechanisms, of coupled nonlinear oscillator manifolds. This was because, to a reasonable approximation, that's what the RFis. The most ancient types of neural tissue always suggest this. (Appendix l tells why we did not actually use such manifolds in our model.) But we could also see that we would have to organize our logic along certain strategic lines in order to maintain some measure of control over our model's behavior.

We chose two major strategies in addition to the above area centralis M_{i} input strategy:
(a) Module recruitment according to a redundancy of potential command. This requires that those modules that apparently have the most information also have the most authority. It also requires that they be able to express their authority by recruiting other modules with less apparent information over to their modal persuasions.
(b) Module decoupling at times of S-RETIC input change. This enables modules to arrive at relative modal preferences following each overall input change mostly on the basis of their own direct γ inputs. They then gradually couple in with the rest of S-RETIC, interact with each other, and eventually converge on a single output modal consensus.

Figure 7. A typical M_{i} of Figure 5 .

For a gross temporal picture of how S-RETIC does its computing, then, we can imagine that S-RETIC has just received a new overall input. Each M_{i} first computes its corresponding modal preferences, mostly on the basis of its new γ inputs. At the next time step, it exchanges modal preferences with selected other modules; concomitantly, it adjusts its own preferences to some degree as a function of those just received from other M_{i}. It continues to operate in this manner each time step thereafter, coupling in ever more tightly to the other M_{i} as it goes along (to a limit), until the next overall input change. Somewhere in this process, a consensus of modules is swung over to a single modal preference and is held there until the next overall input change occurs. At this point the whole sequence starts all over again.

Let us now take a coarse look at how each M_{i} works. Afterwards, we will go back and describe precisely how the foregoing strategies are implemented to achieve the desired S-RETIC behavior. In Figure 7, $M_{i}{ }^{\prime}$ s probability computer computes from its five present γ_{i} inputs the p^{\prime} vector ($p_{1}^{\prime}, \ldots, p_{4}^{\prime}$), where $p^{\prime}{ }_{j}$ is the probability that the present overall $\left\{\gamma_{i}\right\}$ signal configuration properly corresponds to a jth mode output indication. This computation is actually only a table lookup, using tables as shown in Appendix 4. (Appendix 5 tells how Appendix 4 was derived. Summarily, Appendix 4 was computed from a random a priori assignment of each overall $\left\{\gamma_{i}\right\}$ signal configuration to one of our four modal categories. At present, however, we are trying to train in S-RETIC's Appendix 4 tables right from scratch, where all $p_{j}=.25$, by reinforcement procedures.)

The $p_{i}^{\prime \prime}$ and $p^{\text {rit }}{ }_{i}$ signals into the M_{i} in Figure 7 give the momentary modal probabilities as evaluated by selected M_{j} above and below M_{i}. Each N box is a normalizer such that the sum of its four analog outputs equals 1. The twelve normalized $p_{i}^{\prime}, p_{i}^{\prime \prime}, p_{i}^{\prime \prime \prime}$ values are componentwise operated on by a nonlinear function, f, as shown in Figure 2. The \bar{p}_{i} are computed through $C_{a}, C_{\pi}, C_{\delta}$ multiplier units and an $A v$ averaging unit according to the formula

$$
\begin{equation*}
\bar{p}_{i}=\frac{C_{\pi} f\left(p_{i}^{\prime}\right)+C_{\delta} f\left(p_{i}^{\prime \prime}\right)+C_{a} f\left(p_{i \prime \prime}\right)}{C_{\pi}+C_{a}+C_{\delta}} \tag{1}
\end{equation*}
$$

where $C_{\pi}=C_{\pi_{1}} C_{\pi_{2}} Q, C_{\delta}$, and C_{a} are determined as indicated below. The \bar{p}_{i}, then, are just weighted averages of $\mathrm{p}^{\prime}{ }_{i}, \mathrm{p}^{\prime \prime}{ }_{i}, \mathrm{p}^{\prime \prime \prime}$ values after their trends have been appropriately exaggerated by f. Later we shall discuss f and the Cs as mechanisms for redundancy of potential command, and the Cs as mechanisms for decoupling. Figure 8 gives the function.

Since $\left(\overline{\mathrm{p}}_{1}, \overline{\mathrm{p}}_{2}, \overline{\mathrm{p}}_{3}, \overline{\mathrm{p}}_{4}\right)$ is not in general a probability vector (all components ≥ 0, components sum to 1), we put ($\overline{\mathrm{p}}_{1}, \overline{\mathrm{p}}_{2}, \overline{\mathrm{p}}_{3}, \overline{\mathrm{p}}_{4}$) through the h, T, h^{-l}, N blocks to make it so. These blocks also perform the indispensable function of nonlinearly interacting the four probability modalities so that S-RETIC is not just four single-mode probability computers in parallel. The output of h, T, h^{-1}, N is delayed one time unit in U D (for Unit Delay), and used as M_{i}^{\prime} 's output to the ascending a stream, and the overall S-RETIC output bundle.

Since all of the M_{i} do not usually agree with probability l on which mode the overall $\left\{\gamma_{i}\right\}$ signal configuration properly corresponds to, we specify a general output modal decisionary scheme as follows: if 6 or more of the 10 complete modules indicate the j th mode with probability $\geq .5$, S-RETIC is said to converge on the jth mode. This output convergence criterion is most reasonable if one assumes that S-RETIC always predicates its modal computations on the present system mode, k. Then the probabilities out of M_{j} become transition probabilities from mode k. This reduces the equivocation in our output modal decisionary scheme considerably. As to its neurological versimilitude, motoneurons and internuncials on which RF outputs of the more modal type play probably have like decisionary character for go, no-go situations. But this is only a guess.

We now return to the details of formula (1), which reflects our M_{i} design strategies under the two headings: (a) redundancy of potential command, and (b) decoupling. Regarding (a), the function serves to exaggerate the probabilistic modal indications of vector components which pass through them to a degree determined by the extent to which these indications depart from the neutral .25 point. Thus the f functions promote rapid overall computational convergence by amplifying the differences between the $1 \mathrm{st}, 2 \mathrm{nd}, 3 \mathrm{rd}$, and 4 th modal component gains around

Figure 8. The $f(p)$ function.
interconnected $M_{i_{l}}, M_{i_{2}}, \ldots, M_{i_{N}}, M_{i_{1}}$ loops in accordance with the differences between the corresponding $p_{a_{i}}, p_{\delta_{i_{j}}}$ modal probability values. One consequence of this, as we shall see, is that some M_{i} tend to pick up, or recruit, other more equivocally indicating M_{j} over to their modal persuasion by a logic strikingly parallel to the frequency domain logic mediated by manifolds of coupled nonlinear oscillators. This is redundancy of potential command.

Also in connection with strategy, a), we identify the most crucial M_{i} as those whose output p_{i} vectors have components with values furthest from. 25. We call such vectors "peaked." The $C_{\pi_{2}}, C_{a}$, and C_{δ} factors of each M_{i} are always 1,1 , and l if the corresponding $p_{\pi_{i}}, p_{a_{i}}$ and $p_{\delta_{i}}$ are not peaked (do not have component values differing greatly from. 25). But if at any time instant (i.e., computation clock time), any of the $f\left(p_{\pi_{i}}\right)$, $f\left(p_{a}\right)$, or $f\left(p_{s_{i}}\right)$ components are ≥ 1 or $\leq 0, C_{\pi}, C_{a}$, or C_{δ} are set to 1.5 , 2 , or 2 respectively for that time instant (The as ymmetry between $C_{\pi_{2}}$, C_{a}, and C_{δ} was necessary because of the two other factors in $C_{\pi}=C_{\pi_{1}} C_{\pi_{2}} Q$). Thus, for example, if any M_{i} have $p_{\pi_{i}}$ and $p_{a_{i}}$ vectors nearly equal to $(.25, .25, .25, .25)$ and $a p_{\delta_{i}}=(.7, .1, .1, .1), p_{\pi_{i}}$ and $p_{\alpha_{i}}$ cannot overwhelm $p_{\delta_{i}}{ }^{\prime} s$ proper effect on M_{i} 's output p_{i} vector. This again is redundancy of potential command.

The decoupling strategy, b) involves both a local M_{i} and global S-RETIC decoupling following overall $\left\{\gamma_{i}\right\}$ signal configuration changes. The purpose of this strategy is to prevent S-RETIC from being either too trigger-happy for new modal computations after slight and unimportant γ changes, or too prone to lock forever on output modal indications that get deeply intrenched at S-RETIC's output. (Monkeys and pigs have the most trigger-happy and sluggish RFs we know of among the higher vertebrates.) The idea is to quench a and δ signals after significant γ_{i} changes to sufficient degrees and for sufficient durations to allow injections of new $\gamma_{i_{i}}$-derived M_{i} output signals into the a and δ streams.

The b) strategy's global decoupling is expressed by the Q factor in C_{π}. If S-RETIC is converged on mode j at $t-l$ and there are any $\left\{\gamma_{i}\right\}$
changes from $t-1$ to t, Q is increased by an amount and for a duration that is roughly proportional to the degree of entrenchment of S-RETIC in mode j at $t-l$. The values of Q at t are determined from the following table:

Q is decreased by leach time step after t until it reaches a minimum of 1 , and then it remains at that value until the next overall $\left\{\gamma_{i}\right\}$ change. If at any time, on the basis of a new $\left\{\gamma_{i}\right\}$ change, a new Q is computed which exceeds the value Q has decayed to from the last Q computation, then, and only then, is Q set to its newly computed value. The same Q is used in the (1) formula of M_{3}, M_{4}, \ldots, and M_{12}.

The b) strategy's local decoupling is expressed by $\mathrm{C}_{\pi_{1}}$. It is determined separately for each M_{i} according to the following table:
Number of $\mathrm{p}^{\prime}{ }_{\mathrm{i}}$ changes
from $\mathrm{t}-1$ to t that are >1

0	1
1	2
2	4
3	6
4	8

C_{π} is handled just like Q each time step after t, except that its minimum is 2 instead of 1 in order to keep M_{i}^{\prime} s output p_{i} normally about equally dependent on p_{i}^{\prime} and $\left(p_{i}^{\prime \prime}, p^{\prime \prime \prime}{ }_{i}\right)$. An exception to the foregoing C_{π} rule occurs at $t=0$, when an $\mathrm{S}-\mathrm{RETIC}$ simulation run begins. $\mathrm{Then}^{\mathrm{C}_{\pi_{1}}}=\infty$. At $t=1$, the next time step, $C_{\pi_{1}}$ is reset to 1 .

Our concept of the strategic difference between local and global decoupling rests on the following analogy: Suppose a board of 12 medical doctors, each a generalist as well as a specialist in some different area of medicine, has to decide on which of 4 possible treatments each of a series of patients should receive. Each doctor corresponds to one S-RETIC module: each patient's medical record corresponds to one S-RETIC overall $\left\{\gamma_{i}\right\}$ input; and each treatment corresponds to one S-RETIC output mode. Every time the board looks at a new patient, the 12 doctors all decouple their decisionary ties to have a separate look at the records. After that, they begin their discussion, and in our terminology, information couple back in with each other in an attempt to shake sown a consensual decision (legal sense of consensual). This compares to global decoupling in S-RETIC.

Now suppose that the whole board, save one, in passing from the ith to the ($\mathrm{i}+\mathrm{l}$)st patient is unable to see any significant differences in the records. The one that is able to should be left alone long enough to arrive at some preliminary conclusions of his own, and then he should be given a special opportunity to gainsay the rest of the board's tentative conclusions until they have heard him out. After that, he should submit to the full process of board discussion and play his regular role in shaping a total board decision. This corresponds to local decoupling in one S-RETIC module. The value of it, when contrasted to just additional global decoupling, is that it promotes greater overall decisionary speed because of its better organization and greater efficiency. The price of it is that overall decisions are not in general as soundly derived, because their startpoints are not neutral.

We now turn to the details of the h, T, and h^{-1} blocks in Figure 7. Their effect is to restore \bar{p} to a probability vector such that the relative significance of $\overline{\mathrm{p}}$'s components is not greatly distorted in the process. Since differences between small $\overline{\mathrm{p}}$ probability components (e.g., between . 25 and . 05) are generally more significant then equal differences between large $\overline{\mathrm{p}}$ probability components (e.g., between. 65 and. 85), we first pass $\overline{\mathrm{p}}$ componentwise through an exponential $h(x)$ of the form shown in Figure 9. We then add the absolute magnitude of the most negative resulting component to each result to $g \in t$ all components ≥ 0. We finally pass the
results of this componentwise through a "translated inverse" of $h(x)$, denoted $h^{-1}(x)$, as shown in Figure 9. The equations for $h(x)$ and $h^{-1}(x)$ are derived as follows:

$$
\begin{aligned}
y^{\prime} & =y+.2 \\
x^{\prime} & =x+.2 \\
y^{\prime}{ }_{g} *\left(x^{\prime}\right) & =e^{a x^{\prime}}-1=1.6=e^{a l .6}-1 .
\end{aligned}
$$

Therefore

$$
a=\frac{\log _{e^{2}} 2.6}{1.6}
$$

Therefore

$$
y_{g *}(x)=e^{a x} e^{2 a}-1.2
$$

Therefore

$$
y_{g}(x)=e^{a x} e^{2 a}-1=h^{-1}(x)
$$

$$
y_{h}^{\prime}\left(x^{\prime}\right)=1.6-y_{g *}^{\prime}\left(1.6-x^{\prime}\right)
$$

$$
y_{h}^{\prime}\left(x^{\prime}\right)=\left[1.6-e^{a\left(1.6-x^{\prime}\right)}-1\right]
$$

Therefore

$$
y_{h}(x)=2.4-e^{1.4 a_{e}} e^{-a x}=h(x)
$$

Note that in addition to h, T, h^{-1}, N^{\prime} s normalizing and modeinteracting effects, $h(x)$ limits the influence any given M_{i} can have. Thus, one pathological M_{i} cannot buily the rest of the net.

Figure 9. $h(x)$ and $h^{-1}(x)$ curves.

Our last M_{i} strategy is necessary only for speeding up convergences in certain clear cut cases, and for enabling convergences when there is no preferential p_{i}^{\prime} vector provocation towards any one mode. In the latter case, a modal decision must be made in default of any determining input. The strategy is mechanized by adding in at the 15 th nonconvergent cycle of each modal computation that gets that far without converging, the multiplication of each jth component f curve by

$$
\mathrm{G}_{\mathrm{j}}=\frac{4 \sum_{\mathrm{i}=3}^{12}\left(\mathrm{j} \text { th component of } \mathrm{p}_{\mathrm{i}}\right)}{\sum_{\mathrm{i}=3}^{12}\left(\Sigma \text { of all components of } \mathrm{p}_{\mathrm{i}}\right)} \quad \mathrm{j}=1,2,3,4 .
$$

This could be analogous to the development of diffuse decisionary field strengths in real RFs.

Before describing our S-RETIC simulation results, we shall try to impart some intuition on what to look for in the following précis. Our RF* modeling problem is fundamentally one of appropriately matching: (1) the set of all possible correlated overall RF* model inputs; (2) the manner in which the $R F^{*}$ model's regional (i.e., M_{i} type) logic allows initial ascending and descending (i.e., a and δ type) signal sequences to evolve through it during a modal computation; and (3) the nature of the possible sequences of changes out of the correspondents to A, C, and the S_{j} in Figure 5, and also the nature of their associated sequences of modal specifications.

Beyond this, it is important to emphasize a few basic organizational and operational aspects any satisfactory S-RETIC model, denoted Retic below, must have. First, it must have sufficient input scope with respect to the overall central nervous system (CNS) model in which it resides so that it can receive the crucial S_{i} information in every eventuality; and it must have sufficient computational capacity so that it can arrive at the right modal decision, regardless of whether or not conflicting or competitive demands appear over different A, C, and S_{j} systems. For it is established that real reticular formations must be able to cope with virtually every possible sufficiently correlated barrage of input signals.

Second, a Retic must keep its flow of computation close enough to its input receiving areas so that all input changes can quickly exert their influence over its output and modal calculations; and the more important the input changes, the more quickly and profoundly must these influences be exerted. This is only reasonable in command and control systems for which momentary delays and wrong outpits can mean failure or annihilation. Thus, unlike some cortical systems, Retics must be pre-eminently interruptible, and not given to long periods of indecision because of excessive logical depth. Yet Retics must not be allowed to compute new modal commitments too quickly, for this would make them too vulnerable to noise and meaningless distractions (like "dreams," for example). Third, the logical design of a Retic must be extremely economical. Otherwise the heavy decisionary demands placed upon it would make it too large and too slow. Aside from a Retic's conditioning, habituation, long-term learning plasticity, and spatio-temporal coding of information, it is essentially a combinational logic circuit with very many highly correlated inputs and a small number of possible stable outputs. The main economy of any Retic organization of the general type suggested in Figure 6 stems from its repeated use of a fixed amount of modular logic throughout each modal computation. That is, logic signals are recirculated from combinations of M_{i} units to combinations of M_{i} units at successive time instants during each modal computation until an actual or approximate decisionary equilibrium is reached. Then the computation is said to be complete and the modal outputs are produced. In general, such a scheme enables the logic of each M_{i} to be used at nearly full capacity throughout each modal computation, and also enables each Retic input channel to be monitored continuously. This is vastly different from the way conventional one-way-flow combinational logic nets work in engineering systems.

To recapitulate, a Retic must be a wide, shallow, anastomotic logic net, consisting of a logical heterarchy of rather tightly coupled and similar computing modules, each the equivalent of about one neuron deep.

5. SIMULATION RESULTS

Appendix 9 contains selections from our S-RETIC simulation data. The "Run number i, cycle number j, sigma set number k " byline appearing at the top of each page refers respectively to which of three selected simulation runs the accompanying data were obtained from,* which Σ_{i} of the run is currently under test, and which computational pass through the $\left\{M_{\ell}\right\}$ since the introduction of the present Σ_{i} the data pertain to. This i, j, k triple will henceforth be denoted [i, k, j]. "Template" refers to the 5-tuple of γ values entering the M_{i} in question. The 'normalized p-primes" are the present p^{\prime} vectors passing from the first to the second part of each M_{i}. The "modal probabilities at end of present cycle" are the p_{i} vectors out of each M_{i}. On the first-cycle page of each Σ_{i} in the p^{\prime} columns we have underlined the most significant high values and encircled the most significant low ones. Column sums for all $\mathrm{p}^{\prime} \mathrm{s}$ and $\mathrm{p}_{\mathrm{i}} \mathrm{s}$ are given as indications of column averages, and though never underlined or encircled, they are always important in the determination of modal decisions. We refer to the 10 -tuple of p_{i} vectors on the first-cycle page of each Σ_{i} as the initial conditions for that Σ_{i}.

Since much of the meat of this report is contained in Appendix 9, the reader is encouraged to look at it for himself--it won't take him long if he follows only the most significant high and low values. The various design strategies all contribute to S-RETIC circuit actions as intended, so we shall not sort them out for separate discussion. Rather we shall summarize the most important features of S-RETIC behavior. They are:
(1) S-RETIC always converges, and always (so far) in less than 25 cycles. Every time modal gain factors were used, S-RETIC's overall modal preferences were clearly established in their relative degrees over the first 14 cycles of the Σ_{i}. See $[1,3,14],[2,7,14]$, and [3, 1, 14]. The purpose of the gain factors is to speed up, and in rare cases enable, convergences from 14 -cycle start points of approximate but inexact standoffs between 2 or more highest modes.

[^4](2) Once S-REIIC converges anew after at least one previous nonconvergent cycle for a Σ_{i}, it stays converged. S-RETIC has at times maintained a previous convergence, though, for a few cycles after a Σ_{i} change, then deconverged, and finally reconverged to the same or a different mode a few cycles later. See [3, 4, l-4]. Because S-RETIC always converges and then stays converged in this sense, we could redefine an S-RETIC mode to be that stable region of operation entered into at the final convergence of the overall input in question.
(3) After convergence, S-RETIC's p_{i} vectors always head for a limiting set which never contains any vector consisting of three 0 components and one 1 component. An exception to this would occur if all p^{\prime} vectors had probability l in the same mode; but noise in the module T-circuits would cure even that. See run 1.
(4) S-RETIC rolls over from one mode to another easily and quickly under strong $\overrightarrow{\mathrm{p}}^{\prime}$ provocation. As this provocation becomes weaker and weaker, Σ_{i} initial conditions, and gratuitous S-RETIC circuit particularities, play a larger and larger role in the corresponding modal decisions. "Strong \vec{p}^{\prime} provocation" can mean high component values for one mode and low ones for the others; or it can mean a high $\overrightarrow{\mathrm{p}}^{\prime}$ column total on one mode and low ones on the others; or it can mean a blend of both. If high $\overrightarrow{\mathrm{p}}^{\prime}$ component values appear several times in each of several different modes, we have a dissociated (or disintegrated) situation, and the corresponding modal decision is often determined by the Σ_{i} initial conditions - and sometimes in a surprising way $[1,5,1-9]$. The logical complexity of a modal computation (as judged by us) is usually about proportional to the number of cycles before convergence unless $\overrightarrow{\mathrm{p}}^{\prime}$ provocation is weak or equivocal (see $[2,7,1-20])$. By "logical complexity" we mean the degree of \vec{p}^{\prime} competition and conflict, and the intricacy of the pattern of modal unbalances among the $\mathrm{p}_{\mathrm{a}_{\mathrm{i}}}$ and $\mathrm{p}_{\delta_{\mathrm{i}}}$ vectors at the start of a modal computation.
(5) Appendix 9 contains several specific decisionary effects that will now be discussed:
(a) In [1, 2, 107], we see a nice resolution of competition, or conflict, between module p^{\prime} vectors. Here three mode 4 . 5 -components overcome a 1 and a . 4 mode 3 component. This is as it should be; an M_{i} should hardly ever, if ever, be absolutely certain of an overall response mode just on the basis of its own γ input.
(b) In [2, 1, 1-5] we see M_{5} recruiting other M_{i} over to its persuasion against the $\overrightarrow{\mathrm{p}}^{\prime}$ averages.
(c) In $[1,5,1-16]$ we see three mode 1 . 4 s overcome a higher mode $4 \overrightarrow{\mathrm{p}}^{\prime}$ average and initial condition bias (see column totals for the \vec{p}_{i} in $\left.[1,3,1]\right)$.
(d) In $[1,5,1-9]$ we see a higher mode 1 initial condition bias overcome a higher mode $3 \overrightarrow{\mathrm{p}}^{\prime}$ average and an impressive list of mode $3 \vec{p}^{\prime}$ peak values. If it were not for the dissociation, or general scatter, of $\vec{p}^{\mathbf{}}$ high component values here, we would be displeased by the convergence to made 1. As it is, it seems pleasingly bio-logical. Note that it is difficult to discern any real computational progress in cycles 2 through 5, other than a slight reduction of variances among the mode j components of the $\overrightarrow{\mathrm{P}}_{\mathrm{i}}$, $\mathrm{j}=1,2,3,4$. This prompts us to challenge anyone to write a set of decisionary motion equations for S-RETIC. The outcome for this Σ_{i} also convinced us that S-RETIC could still surprise us after hundreds of hours of studying its behavior. This is one justification for simulating S-RETIC.
(e) In [3, $1,1-19]$ we see the \vec{p}^{\prime} mode averages swamping out two . 7 mode $1 \mathrm{p}^{\prime}$ peaks. From (c), (d) and a case similar to the one just considered but not included in Appendix 9, we conclude that either \vec{p}^{\prime} peaks, or \vec{p}^{\prime} averages, or p_{i} initial conditions can carry an S-RETIC modal decision in opposition to the other two aligned against it. It can also
happer that any two of these can carry a decision in opposition to the third. See $[1,6],[2,3-5]$, and $[2,7-8]$.
(f) In [3, l, l-19] we see a contest between exactly matched modes 2, 3, and 4 decided by gratuitous circuit particularities (noise of a kind). In this case S-RETIC was little more than an elaborate 3 -state flip-flop, started at a neutral point.
(g) In [2, 1, 1-10] we see a boundary $M_{i}^{\prime \prime s}\left(M_{2}{ }^{\prime} s\right.$ to be precise) mode $4 \overrightarrow{\mathrm{p}}^{\prime}$ peak carry a modal decision against strong mode 1 initial conditions, a competing mode $1 \overrightarrow{\mathrm{p}}^{\prime}$ peak, and a second highest mode $1 \overrightarrow{\mathrm{p}}^{\prime}$ component average.
(6) We remark that anyone who carefully peruses a significant block of our simulation data will note many other interesting facets of S-RETIC decisionary behavior. For example: the rate of aggregate swelling of a modal component among the M_{i} determines to within a tolerance the regenerative gain of that component each cycle; the degree of "dissociation" (or the prevalence of apparently uncooperative phenomena, amenable to, say, a simple statistical description) among the $\overrightarrow{\mathrm{p}}_{\mathrm{i}}$ is not particularly related to the variances of their jth components; and M_{i} "recruitment" is not just the converse of \vec{p}_{i} inhibition by other \vec{p}_{i}.
(7) Our simulations have proved that S-RETIC parameter settings can have wide tolerances. This is fortunate, for real RFs function all the way from coma to convulsion.

Appendix 10 gives a macro-level flow chart for our simulation program. It was written in a very transparent MAC language by J. Blum, and run on the MIT Instrumentation Laboratory Honeywell 1800 Computer.

6. FORM-FUNCTION RELATIONS FOR S-RETIC

S-RETIC computes an output modal function of the twelve p^{\prime} vectors $\mathrm{p}_{1}^{\prime}, \mathrm{p}_{2}^{\prime}, \ldots, \mathrm{p}_{12}^{\prime}$, and a set of initial condition vectors, I_{F}. The I_{F} vectors are completely specified by the $p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}, \ldots, p_{12}^{\prime}$ vectors at the end of the previous Σ_{i}. We denote S-RETIC's output modal function $F\left(p_{1}^{\prime}, \ldots, p_{12}, I_{F}\right.$), and its possible values $1,2,3$, and 4.
F has three symmetries that we shall rely on throughout the remainder of this Section:
I. For large numbers of modules, where the small number combinatorics of the $M_{i}-$ to $-M_{j}$ connections no longer appertain, F is invariant under all P_{i} and corresponding I vector permutations, $i \neq 1$, 2. That is, simple exchanges of M_{i} positions within the net, each M_{i} 's γ connections remaining intact, do not affect F.
II. F implies the same evaluation function on all four modes.
III. F sometimes converges on a mode different from the one with highest average over the p_{i} vectors, or the I_{F} vectors, or both the P_{i} and I_{F} vectors. See 5-(e) of the previous Section. More generally, our simulation data show that S-RETIC can converge to a mode favored by either the p_{i} average, or the I_{F} average, or the p_{i}^{\prime} peaks (as in. $7, .1$, . l, . l, e. g.), in opposition to the other two of these factors aligned against it. Any two of these factors aligned together can also overcome the third in opposition; and any one of them can overcome the other two when they are against it but not aligned on the same mode against it. There is thus a strength-of-effect symmetry over these three factors.

In the rest of this Section, we outline an argument to show that S-RETIC computes a mode function, F, that no S-RETIC net without a and δ connections but with nonlinear summative output scheme could compute even though it be allowed more equipment. We denote such an alternative net, \bar{N}, and picture one in Figure 10 . The \bar{M}_{i} in Figure

Figure 10. A modular net without intermodular coupling.

10 correspond exactly to the γ-to $-\vec{p}_{i}{ }_{i}$ part of each S-RETIC module, except that we allow each \bar{M}_{i} to have more γ inputs and greater logical complexity than its M_{i} counterpart. We insist, though, that the \bar{M}_{i} be simple enough so that at least two conflicting $\overrightarrow{\mathrm{p}}_{\mathrm{i}}{ }^{\prime}$ tendencies arise for each of several overall $\{\gamma\}$ inputs. (This condition cannot be made more precise until the end of the Section.) Obviously the larger S-RETIC is, the easier this condition is to satisfy.

We next suppose that Z computes a 4 -valued modal function, Z, of
 the function computed by $Z, Z\left(p_{1}^{\prime}, \ldots, p_{k}^{\prime}, I_{Z}\right)$. We require that k be less than or equal to the number of corresponding S-RETIC modules. Z, then, is defined to be $1,2,3$, or 4 according as

$$
\begin{align*}
& S_{1}=\sum_{i, j} f_{i j}^{l}\left(p_{i j}^{\prime}\right) \\
& S_{2}=\sum_{i, j} f_{i j}^{2}\left(p_{i j}^{\prime}\right) 1 \leq i \leq k ; i \text { an } \bar{M}_{i} \text { module number } \tag{2}\\
& S_{3}=\sum_{i, j} f_{i j}^{3}{ }^{\prime}\left(p_{i j}^{\prime}\right) 1 \leq j \leq 4 ; j \text { a mode number } \\
& \text { or } \quad S_{4}=\sum_{i, j} f_{i j}^{4}{ }^{\prime}\left(p_{i j}^{\prime}\right)
\end{align*}
$$

has the highest value, where $p_{i j}{ }_{i j}$ is the j th component of \vec{p}_{i}, and the $f_{i j}{ }_{i j}$ are arbitrary continuous functions of their arguments (proportional to log functions, perhaps).

If we had let our $p_{i j}{ }_{i j}$ in Figure 10 be general degrees-of-presence of various properties in $\overline{\mathrm{N}}$'s overall input stimulus, instead of specifying them as we did, Figure 10 could be reduced to a nonlearning Pandemonium Machine or to one of several popular Bayesian logic designs in the special case. We did not allow this because it would have prevented us from obtaining a rigorous comparison between \bar{N} and S-RETIC. The results of such a comparison, though, would certainly have been similar to the one we are undertaking if it could have been made.

Let us now derive our underlined statement above. It is not a theorem because part of our argument for it stems from observations and extrapolations on our simulation data. Our method will be to try to equate F and Z in the special case where I_{F} is null (recall that for the first overall input of a simulation, $\left.C_{\pi}=\infty\right)$, the boundary \vec{p}_{i} of S-RETIC both equal. 25 , $.25, .25, .25, k=10$, and the Z set of $\overrightarrow{\mathrm{P}}^{\prime}{ }_{i}$ is identical to the F set of $\overrightarrow{\mathrm{p}}^{\prime}{ }_{i}$ in every case. We will see that Z cannot equal F under such conditions and why, and then generalize to get our result.

Since Z must be invariant under all nonboundary $\overrightarrow{\mathrm{P}}^{\prime}{ }_{i}$ permutations, $f_{i j}^{k}=f_{\ell j}^{k}$ in equations (2) for all (i, ℓ) pairs, $l \leq i, \quad \ell \leq 10$. Z must also employ the same evaluation function on each mode. Thus there must exist a cyclic permutation, Π, of the $\overrightarrow{\mathrm{P}}^{\prime}$ i components such that

$$
\begin{aligned}
& \Pi\left(p^{\prime}{ }_{i 1}\right)=p^{\prime}{ }_{i j} \quad, \quad j \neq 1 \\
& \Pi\left(p_{i j}^{\prime}\right)=p_{i k}^{\prime}, \quad k \neq j, 1 \\
& \Pi\left(p^{\prime}{ }_{i k}\right)=p^{\prime}{ }_{i m}, \quad m \neq 1, j k \\
& \text { and } \quad \Pi\left(\mathrm{p}^{\prime}{ }_{\mathrm{im}}\right)=\mathrm{p}^{\prime}{ }_{\mathrm{il}}
\end{aligned}
$$

the same for all $1 \leq i \leq 10$; and such that $f^{\ell}{ }_{i j}\left(p_{i j}^{\prime}\right)=f^{m}{ }_{i k}\left(p_{i k}^{\prime}\right)$ for all i and for $\ell \neq m$ if and only if $\Pi\left(p_{i j}^{\prime}\right)=p^{\prime}{ }_{i k}$ and $\Pi\left(p_{i \ell}^{\prime}\right)=p^{\prime}{ }_{i m}$. Dropping all unnecessary indices, equations (2) become

$$
\begin{array}{ll}
S_{1}=\Sigma f_{j}\left(p_{i j}^{\prime}\right) & \\
S_{2}=\sum f_{j}\left(I I\left(p_{i j}^{\prime}\right)\right) & 1 \leq i \leq 10 \\
S_{3}=\sum f_{j}\left(I^{2}\left(p_{i j}^{\prime}\right)\right) & 1 \leq j \leq 4 \tag{3}
\end{array}
$$

and

$$
S_{4}=\Sigma f_{j}\left(\Pi^{3}\left(p_{i j}\right)\right)
$$

Our S-RETIC simulation data requires that in each S_{k} sum of (3), f_{k} be monotonic increasing and $f_{j}, j \neq k$, be monotonic decreasing, f_{k}, though, cannot increase too fast as a function of $p^{\prime}{ }_{i k}$, because if it did the average $\overrightarrow{\mathrm{p}}_{\mathrm{i}}{ }_{\mathrm{i}}$ could not determine Z^{\prime} s value as often as it does $\mathrm{F}^{\prime} \mathrm{s}$. Also the f_{j} cannot decrease too fast as a function of $p_{i j}$ for the same reason. In other words, symmetry III gives us a severe set of constraints on the $f_{j} s$. We denote the bounds on f_{k} and f_{j} for S_{k} by $\operatorname{Sup} f_{k}$ and $\operatorname{Inf} f_{j}$ (see Figure ll). These bounds must be established from simulation data.

Suppose now that we have a set of $\overrightarrow{\mathrm{P}}_{\mathrm{i}}^{\prime}$ vectors all equal to (. $25+\epsilon$, $.25, .25, .25-\epsilon$), a corresponding largest S_{k} in equations (3) equal to S_{1}, and a corresponding S-RETIC F value equal to l. We want ϵ to be just large enough to make this true (in our S-RETIC simulation this was about.03). Next, consider a second \vec{p}_{i}^{\prime} vector set comprising $\mathrm{p}_{1}^{\prime}=\ldots=\mathrm{p}_{8}^{\prime}=(.1, .3, .3, .3)$ and $\mathrm{p}_{9}^{\prime}=\mathrm{p}_{10}^{\prime}=(.7, .1, .1, .1)$. In equations (3), the difference between S_{1} for the first and second $\vec{p}^{\prime}{ }_{i}$ sets is

$$
\begin{align*}
\Delta S_{1}= & 8\left[f_{1}(.1)-f_{1}(.25+\epsilon)\right]+2\left[f_{1}(.7)-f_{1}(.25+\epsilon)\right] \\
& +8\left[f_{2}(.3)-f_{2}(.25)\right]+2\left[f_{2}(.1)-f_{2}(.25)\right] \\
& +8\left[f_{3}(.3)-f_{3}(.25)\right]+2\left[f_{3}(.1)-f_{3}(.25)\right] \\
& +8\left[f_{4}(.3)-f_{4}(.25-\epsilon)\right]+2\left[f_{4}(.1)-f_{4}(.25-\epsilon)\right] \\
= & -a_{1}^{1}+a_{2}^{1} \\
& -a_{3}^{1}+a_{4}^{1} \\
& -a_{5}^{1}+a_{6}^{1} \\
& -a_{7}^{1}+a_{8}^{1} \tag{4}
\end{align*}
$$

Figure 11. Bound curves on the f_{k} and f_{j} functions for S_{k} in equations (3).
where all $a_{i}^{l} \geq 0$. Similarly,

$$
\begin{aligned}
\Delta S_{k}= & -a_{1}^{k}+a_{2}^{k} \\
& -a_{3}^{k}+a_{4}^{k}, \quad \quad k=2,3,4 \\
& -a_{5}^{k}+a_{6}^{k} \\
& -a_{7}^{k}+a_{8}^{k}
\end{aligned}
$$

In our S-RETIC simulation, the F value for both sets of \vec{p}_{i} vectors above was 4. Suppose we have a set of f_{j} for equations (3) that enables Z to best approximate F-- indeed, perhaps equal it. Certainly $Z \neq F$ if all $\Delta S_{k}=0$. Also, since the average of the second $\vec{p}_{i}{ }_{i}$ set above is (. 22, $.26, .26, .26$), the f_{j} could not be such as to make each S_{k} equal to the average over i of the $\mathrm{p}^{\prime}{ }_{i k}$. Furthermore, since each 4 -tuple of S_{k} values has many $\overrightarrow{\mathrm{P}}_{\mathrm{i}}{ }_{i}$-set solutions for any selection of f_{j} functions, the question arises as to whether some second $\overrightarrow{\mathrm{p}}_{\mathrm{i}}$ vector set other than the one given above exists such that either all ΔS_{k} for it are 0 , or the highest S_{k} for it does not correspond to its F value. If so, $Z \neq F$.

We are certain there does not exists a set of f_{j} functions for equations (3) such that Z could be made equal to F. In fact, given any alleged set of such f_{j}, we could at least almost always find a second \vec{p}_{i}^{\prime} set such that all $\Delta S_{k}=0$ for that set but F^{\prime} s value changed between that set and the first $\overrightarrow{\mathrm{p}}_{\mathrm{i}}{ }_{\mathrm{i}}$ set (under the assumed null conditions on I_{F} and I_{Z}, of course). Anyone who studies our Appendix 9 should have no difficulty in seeing this. But if that should fail, we could always find a second $\overrightarrow{\mathrm{p}}^{\prime}{ }_{i}$ set such that $F \neq Z$ for it by concentrating on $a^{k}{ }_{j}$ adjustments in (4), which because of the bounds and signs on the f_{j} would be unidirectional, smooth, and simple. This should be evident.

It now follows rather easily that removing our argument requirements that the number of \bar{M}_{i} be 10 and that the $Z \vec{p}_{i}^{\prime}$ set equal the $F \overrightarrow{\mathrm{p}}_{\mathrm{i}}{ }_{\mathrm{i}}$ set would not change the character of our result at all. Nor can
we see how it could be refuted using S-RETICs with more and more modules. They would seem only to demonstrate it even more spectacularly. Hence the underlined assertion early in this Section.

7. CONCLUSIONS AND FUTURE WORK

We can safely infer from our simulation results, the cooperative effect of our design strategies, and S-RETIC's specifications (Appendix 8), that proportionately increasing the numbers of everything but modes in S-RETIC would improve its performance in every important respect. Given a large number of M_{i}, we would put those with most similar area centrali farthest apart in the model. We would also want the set of M_{i} area centrali to form, at the $\left\{\gamma_{i}\right\}$ level, the equivalent of a highly overlapping cover of the complete $\left\{\sigma_{i}\right\}$ bundle. This would give us an S-RETIC of much greater decisionary acuity and competence, and vastly greater invulnerability to M_{i} failure, than the present test model enjoys. To a good approximation, such a structure would be slower than our test model according as the ratio:

$$
\frac{\text { Number of splittings of each output line }}{\text { Number of } \mathrm{M}_{\mathrm{i}}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}
$$

is lower than $3 / 12$, its value in our simulation. This assumes 4 modes. More than about 6 modes might slow the model down considerably, or make it unduly sensitive to noise.

How does the complexity of S-RETIC increase with larger $\left\{\sigma_{i}\right\}$ bundle sizes? First, let us assume an S-RETIC with k modules, ℓ γ_{i} inputs to each module, and a $\left\{\sigma_{i}\right\}$ set of m lines. In our simulated $\mathrm{S} \mathrm{j}_{\text {RETIC }}, \mathrm{kl} / \mathrm{m}=(12 \times 5) / 9<7$. We believe that kl / m might satis factorily remain less than 7 m (constant) for increasing k, l, and m. If so, N_{1} / N_{2} above would increase linearly with m, giving us an overall S-RETIC complexity proportional to m . This compares favorably with the corresponding exponential relation in switching theory.

We have in the foregoing supplied one paradigm for getting a family or more than two information-coupled automata to work together in a slightly biological fashion. To the extent that our result was inspired by biology and is a good command and control computer for some purposes, we make a claim for bionics.

We especially emphasize that S-RETIC is not just a glorified pattern recognition net. It satisfies the additional temporal constraints of a real-time RF model. The previous Section indicates its functional peculiarities and strengths as compared to a large class of nonlinear, modular, Bayesian logic nets.

S-RETIC's compound virtue as a computer is that it is fast, economical, reliable according to the redundancy of potential command, and operational on all of its inputs at each time step.

We have recently augmented S-RETIC as shown in Figure 12 to begin our study of possible RF time-binding mechanisms. The ω_{j} lines there carry crude area centralis information from their modules of origin. There are $13 \sigma_{i}$ and $7 \gamma_{i}$ per M_{i}. We allow each M_{i} to remember its two previous inputs, outputs, Rpc reinforcements, Rac reinforcements, and modes of overall convergence. These combinations are then used to modify the p^{\prime} vector response to future γ_{i}, ω_{i} inputs. This enables us to realize several types of cooperative conditioning, extinction, habituation, and long-term adaptation among the M_{i}. The problem is to get a group of M_{i}, each of which only partially appreciates the overall input-overall output correspondence problem, to learn in an integrated, harmonious fashion. The main obstacle seems to be interference due to local signal ambiguity on overall inputoverall output relations. A major by-product of this work so far has been that we can now see how to engage and drop out RF operational parameters in a gradual manner. We are indebted to W. Brody for several insights on this.

We would like to note the Scheibels' suggestion that S-RETIC might be a more valid model if we regarded our M_{i} as instantaneous functional instead of fixed-regional RF subcomputers. We are taking this remark seriously, for it implicates the legitimacy of our simplifications, the appropriateness of our outlook on RFs, and the propriety of our linguistic level.

Finally, we inquire as to the actual value of our simulation. Its main justification is that we can now think with our S-RETIC model, and not just about it. We hope his will help us to partially invent and partially derive some new insights into RF circuit actions. Another
justification is that we now know the precise consequences of interlacing our simple set of strategies in a behavioral mechanism, and we can see that these consequences were much too complicated to apprehend beforehand. The simulation has strengthened our prejudice that classical mathematics, as symbol manipulation by logical rules, is good for steady state and microcosmic brain processes, but not yet global decisionary ones. We need a type of scientific poetry for that. Nothing else could possibly serve, we think, where each little cause can have such major effects, yet where each person is still able to make so much sense of it.

This takes us back to K. Craik's, "The Nature of Explanation." He would say, with K. Popper and others, and we would agree, that we do not yet have a theory of the RF. For there is no experiment that could invalidate our claims; ourconcept has not yet produced any risky predictions; it does not forbid any measurable RF event; and we have not yet proposed any real alternatives. In this sense, our results were though up, no out.

We wish to acknowledge Dr. Michael Arbib as a major consultant on the organization of this report. We also owe much of what clarity it might have to discussions with Drs. A. and M. Scheibel, Dr. L. Proctor, and Dr. W. McCrumb. D. Peterson and E. Craighill assisted greatly in programming the simulation, and R. Warren was a ready contributor of program organizational ideas.

The computer simulation was done at the Massachusetts Institute of Technology Instrumentation Laboratories under National Aeronautics and Space Administration Contract NSR-22-009-138. The theoretical work was done under Air Force Office of Scientific Research Contract AF-AFOSR-1023-66.

Figure 12. Augmented first part of typical S-RETIC M_{i}.

8. BIBLIOGRAPHY

1. Adametz, J. H., "Rate of recovery of functioning in cats with rostral reticular lesions," J. Neurosurg. 16, 185-197 (1959).
2. Adey, W. R., "Neurophysiological correlates of information transaction and storage in brain tissue," Brain Research Institute, University of California, Los Angeles.
3. Albe-Fessard, D., and Fessard, A., "Thalamic integrations and their consequences at the telencephalic level," Progr. Brain Res. 1, 115-148 (1963).
4. Altman, J., Organic Foundations of Animal Behavior. Holt, Rinehart and Winston, Inc. (1966).
5. Amassian, V., et al., "Patterns of activity of simultaneously recorded neurons in midbrain reticular formation, " Annals New York Acad. Sci. 89, 883-895 (1961).
6. Arbib, M. A., "Automata theory the development," Electrical Engr. Dept., Stanford University (1966).
7. Arbib, M., Brains, Machines, and Mathematics. New York, (1964).
8. Bard, P., and Macht, M., "The behavior of chronically decerebrate cats," 55-70.*
9. Barlow, H. B., "Possible principles underlying the transformations of sensory messages, " 217-234. **
10. Bell, C., Sierra, G., Buendia, N., and Segundro, J. P. "Sensory properties of neurons in the mesencephalic reticular formation, "J. Neurophys. 961-985 (1964).
11. Beurle, R. L., "Properties of a mass of cells capable of regenerating pulses," Phil. Trans. Roy. Soc., 240, B:55-94 (1956).
12. Block, S. H., "A neural net for adaptive behavior," Rand Report RM-3638-PR, Rand Corp., Santa Monica, Calif. (1963).
13. Brodal, A., The Reticular Formation of the Brain Stem: Anatomical Aspects and Functional Correlations. Charles C. Thomas, Pub., Springfield, 111.
14. Braitenberg, V., et al., "Observations on spike sequences, from spontaneously active purkinje calls in the frog, " Kybernetik, (January 1965).
15. Brick, D. B., "Wiener's nonlinear expansion procedure applied to cybernetic problems," IEEE Trans. Systems Science and Cybernetics SSCl (November 1965).

* Neurological Basis of Behavior, ed. G. Wolstenholme and C. O'Connor, Little, Brown, and Co., Boston (1958).
** Sensory Communication - Contributions to the Symposium on Principles of Sensory Communication, ed. W. A. Rosenblith, Massachusetts Inst. of Technology (July 19 to August 1, 1959).

16. Bullock, T. H., "The problem of recognition in an analyzer made of neurons," 7l7-724. **
17. Butenin, N. V., Elements of the Theory of Nonlinear Oscillations, Blaisdell Publ, New York (1965).
18. Caianiello, E. R., "Decision equations and reverberations," Kybernetik, (1966).
19. \qquad , "Decision equations for binary systems, application to neuronal behavior,:" Kynernetik (January 1966).
20. Funct "Nonlinear problems posed by decision equations," from Functional Analysis and Optimization, ed. Caianiello. University of Naples, Naples, Italy (December 1966).
21. Craik, K. J. W., The Nature of Explanation, Cambridge University Press, New York (1952).
22. , The Nature of Psychology, Selections From. ed. S. L. Sherwood, Cambridge University Press, New York (1966).
23. Dell, P., "Some basic mechanisms of the translation of bodily needs," 187-203.*
24. , "Reticular homeostatic and critical reactivity," Progress in $\overline{\text { Brain }}$ Research, Vol. I, Elsevier, Amsterdam (1963).
25. Doty, R. W., "Some neural facts relevant to attention, motivation and learning, " from lecture at International Spring School of Physics "Cybernetics of Neural Processes," Naples, Italy (April 1962).
26. , "The role of subcortical structures in conditioned reflexes," Annals N. Y. Acad. Sci. 92, 939-945 (1961).
27. Doty, R. W., Beck, E. C., and Kooi, K. A., "Effect of brain-stem lesions on conditioned responses of cats," Exp. Neurol. 1, 360-385 (1959).
28. Doty, R. W., and Bosma, J., "An electromyographic analysis of reflex deglutition," J. Neurophysiol. 19, 44-60 (1956).
29. Drocchiolo, C., and Drago, A., "Linear separability and state reverberations," University of Naples, Naples, Italy (1965).
30. Droogleever Fortuyn, J., and Stefens, R., "On the anatomical relations of the intralaminar and midline cells of the thalamus," EEG and Clin. Neurophysiol. 3, 393-400.
31. Ebert, J. D., Interacting Systems in Development. Holt, Rinehart, and Winston, New York (1965).
32. Eccles, and Curtis, "On frequency specific pathways in vertebrate neural tissue," J. Physiol. 150,374 (1960).
33. Fair, C. M., "The organization of memory functions in the vertebrate nervous system," Neurosciences Res. Prog. Bull. 3, 27-62 (April 7, 1965).
34. Fair, C., The Physical Foundations of the Psyche. Wesleyan University Press, Middletown, Conn. (1963).
35. Farley, B., Films on artificial neural net operation, shown at various cybernetics conferences. Films at MIT Lincoln Laboratories, Bedford, Massachusetts, 1963.
36. Fessard, A., "The role of neuronal networks in sensory communications within the brain, " 585-606. **
37. Flexner and Flexner, "On puromyacin erosion in avoidance trained rats," in Proc. Nat. Acad. Sci. 52 (1964).
38. Gabor, D., "Hologram pattern recognition," Nature, (October 30, 1965).
39. Gastaut, H., "Some aspects of the neurophysiological basis of conditioned reflexes and behavior," 255-276. *
40. Handbook of Physiology, Sections 2, 3, Neurophysiology. ed. J. Field, H. W. Magoun, V. E. Hall, American Physiological Society, Washington, D. C. (1959-1960).
41. Hennie, F., Iterative Arrays of Logical Circuits. MIT Press, Cambridge, Mass., and Wiley, New York.
42. Harmon, L. D., and Lewis, E. R., "Neural modeling," Physiol. Rev. 46, 513-591 (1966).
43. Hernandez-Peon, R., "Reticular mechanisms of sensory control," 497-520. **
44. Herrick, C. J., The Brain of the Tiger Salamander, Amblystoma Tigrinum. University of Chicago Press (1948).
45. Humphry, and Rodin-Smith, "On the specificity of neural habituation in cockroach ganglia," Proc. Roy. Soc. London Series B 122, 106 (1937).
46. John, E. R., and Killam, K. F., "Electrophysiological correlates of avoidance conditioning in the cat," J. Pharmacology and Exp. Therap. 125, 252-274 (1959).
47. Kilmer, W. L., "Iterative switching networks composed of combinational cells," IRE Trans. Electron Computers EC-11, 123-131 (1962).
48. \qquad , "On Cycling Behavior in 1-Dimensional, Bilateral Iterative Networks," Research Report, Electronics Research Laboratory, Montana State College, August 1962.
49. , "On dynamic switching in l-dimensional iterative logic networks," Information and Control 6, 399-415 (1963).
50. "Topics in the theory of l-dimensional ite rative networks," Information and Control 7, (March 1964).
51. Kilmer, W. L., and McCulloch, W., "Towards a theory of the reticular formation," Proc. IEEE 5th National Symposium on Human Factors in Electronics, (May 1964).
52. Kilmer, W. L., et al., "On a cybernetic theory of the reticular formation, " Proc. 1966 Bionics Symposium, Dayton, Ohio (May 1966). To be published.
53. Krieg, W. J. S., A Polychrome Atlas of the Brain Stem. Brain Books, Evanston, Illinois, (1963).
54. Brain Mechanisms in Diachrome. Brain Books, Evanston, Illinois, (1963).
55. Leibnitz, Selections. ed. P. P. Wiener, Scribner's, New York (1951).
56. Lettvin, J. Y., Maturana, H. R., Pitts, W. H., and McCulloch, W. S., "Two remarks on the visual system of the frog," 757-776. **
57. Magoun, H. W., The Waking Brain. Charles C. Thomas, Pub., Springfield, Illinois, (l963).
58. McCulloch, W. S., Embodiments of Mind. MIT Press, Cambridge, Massachusetts, (1965).
59. McCulloch, W., and Kilmer, W. L., "Introduction to the problem of the reticular formation" in Automata Theory, Proc. of the 1964 International Summer School of Physics, Ravello, Italy, ed. E. Caianiello, Academic Press, (1966).
60. McLardy, T., "Hippocampal formation of brain as detector-coder of temporal patterns of information, " Perspective Biol. Med. 2, 443-452 (1959).
61. McLean, P. D., "Psychosomatic disease and the 'visceral brain:' recent developments bearing on the Papez theory of emotion, " Psychomatic Medicine 11, 338-353 (1949).
62. , "The limbic system with respect to self-preservation and the preservation of the species," J. Nervous and Mental Disease 127, 1-11 (1958).
63. Melzack, R., and Wall, P. D., "Pain mechanisms: a new theory," Science 150, 971-979 (November 1965).
64. Minorsky, N., Nonlinear Oscillations. Van Nostrand, Princeton, New Jersey, (1963).
65. Minsky, M., "Matter, mind and models," Proc. IFIPS Congress, Spartan Books, Washington, D. C., (May 1965).
66. Minsky, M., and Selfridge, O., "Learning in random nets," Fourth London Symposium of Information Theory, Butterworths, London, 335-347, (1961).
67. Moore, G. P., Perkel, D. H., and Segundo, J. P., "Statistical analysis and functional interpretation of neuronal spike data, " Annual Rev. of Physiol. 28, 493-522 (1966).
68. Moore, J., and Mahler, H. R., "Introduction to molecular psychology," Proc. California Association of Chem. Teachers, 42, 49-60 (January 1965).
69. Morrell, R., and Jasper, H. H., "Electrographic studies of the formation of temporary connections in the brain, " Electroencephalog. Clin. Neurophysiol. 8, 201-215 (1956).
70. Moruzzi, G., "Reticular influences on the EEG," Electroencephalog. Clin. Neurophysiol. 16, 2-17 (1964).
71. Moruzzi, G., and Magoun, H. W., "Brain stem reticular formation and activation of the EEG, " Electroencephalog. Clin. Neurology 1, 445-473 (1949).
72. Nauta, W. J. H., "Central nervous organization and the endocrine motor system, " from Advances in Neuroendocrinology, University of Illinois, (1963).
73. , "Fibre degeneration following lesions of the amygdaloid complex in the monkey," J. Anatomy 95, 4(October 1961).
74.

, , "Hippocampal projections and related neural pathways to the mid-brain in the cat," from Brain 81:3, 319-340 (1958).
75. ,_, "Some efferent connections of the prefrontal cortex in the monkey, " from the Frontal Grannular Cortex and Behavior, McGraw-Hill, (1963).
76. Nauta, W. J. H., and Koella, W. P., "Sleep, wakefullness, dreams, and memory, ${ }^{\text {st }}$ Neurosciences Res. Prog. Bull. 4 (May 31, 1966).
77. Nauta, W. J. H., and Kuypers, H. G. J. M., "Some ascending pathways in the brain stem reticular formation, " In Reticular Formation of the Brain, ed. H. H. Jasper et al. Little, Brown, Boston, 3-30 (1958).
78. Nauta, W. J. H., and Mehler, W. R., "Some efferent connections of the lentiform nucleus in monkey and cat," Anat. Record 139, 260 (1961).
79. Nauta, W. J. H., and Ramon-Moliner, E., "The isodendritic core of the brain stem," J. Comp. Neurology 126, 3 (March 1966).
80. Nauta, W. J. H., and Valenstein, E. S., "A comparison of the distribution of the fornix system in the rat, guinea pig, cat, and monkey, " J. Comp. Neurology 113, 3 (December 1959).
81. Nauta, W. J. H., and Whitlock, D. G., "An anatomical analysis of the non-specific thalamic projection system, "In Brain Mechanisms and Consciousness, ed. J. G. Delafresnaye, Illinois, $81-116$ (1954).
82. Nilsson, N. J., "Adaptive Pattern Recognition: A Survey," Paper presented at the 1966 Bionics Symposium, Dayton, Ohio.
83. Olds, J., and Milner, P., "Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain," J. Comp. and Physiol. Psychology 47, 419-427 (1954).
84. Pask, G., An Approach to Cybernetics. Harper Bros., New York, (1961).
85. Pringle, J. W. S., "On the parallel between learning and evolution," Behavior 3:174, 90-110(1951).
86. Scheibel, M. E., and Scheibel, A. B., "Hallucinations and the brain stem reticular core. Reprinted from Hallucinations, Grune and Stratton, 13-35 (1962).
87. , "Neurology of Learning," Reprinted from Childhood Education, (February l966).
88. , "On neural mechanisms for self-knowledge and command," $\overline{\text { Mitre Report SS-3, First Congress on the Information Systems }}$ Sciences, Mitre Corp., Boston, Massachusetts.
89. \qquad , "Patterns of organization in specific and nonspecific thalamic fields," from The Thalamus, ed. Purpura and Yahr, New York (1966).
90. , "Periodic sensory nonresponsiveness in reticular neurons," Arch. Ital. Biol. 103, 300-316 (1965).
91. ___ "Some structuro-functional correlates of development in young $\overline{\text { cats, }}{ }^{\prime \prime}$ Reprinted from Electroenceph. Clin. Neurophysiol., Netherlands, (1963).
92. \qquad , "Structural substrates for integrative patterns in the brain stem reticular core, " Reprinted from Reticular Formation of the Brain, Internation Symposium, Boston, 1958.
93. "The adaptive response of individual reticular units to repeated stimuli, " Vol. II-Recent Advances in Biological Psychiatry, Proc. Nineteenth Annual Conv. Soc. Biol. Psychiatry. Los Angeles, Calif. (May 1-3, 1964).
94. , "The response of reticular units to repetitive stimuli," Arch. Ital. Biol. 103, 279-299 (1965).
95. , "The brain stem reticular core - an integrative matrix," Proc.

Approaches to Systems Theory in Biol., Case Tech. Symposium, Cleveland, Ohio (October 1966).
96. Scheibel, M. E., Scheibel, A. B., and Jasper, H. H., "A Symposium on Dendrites, " Formal Discussion, No. 10 (November l958).
97. Scheibel, M. E., Scheibel, A. B., Mollica, A., and Moruzzi, G., "Convergence and interaction of afferent impulses on single units of reticular formation, " J. Neurophysio. 18, 309-331 (1955).
98. Scheibel, M. E., Scheibel, A. B., Walberg, F., and Brodal, A., "Areal distribution of axonal and dendritic patterns in inferior olive, " J. Comp. Neur. 106, l21-150 (November l956).
99. Scholl, D. A., The Organization of the Cerebral Cortex. Methuen and Co., Ltd., London, (1956).
100. Scott, J. P., "Critical periods in behavioral development," Science, 138, 949-958 (1962).
101. Sechenov, I. M., Reflexes of the Brain. MIT Press, Boston Mass., (1965).
102. Sharpless, and Jasper, "Habituation of the arousal reaction," Brain 79, 655 (1956).
103. Shurrager, P. S., and Culler, E., "Conditioning in the spinal dog," J. Exp. Psychol. 26, 133-159 (1940).
104. Shurrager, P. S., and Dykman, R. A., "Successive and maintained conditioning in spinal carnivores," J. Comp. Physiol. Psych. 49, 27-35 (February 1956).
105. Shurrager, P. S., and Dykman, R. A., "Walking spinal carnivores," J. Comp. Physiol. Psychol. 44, 252-262 (1951).
106. Skinner, B. E., "The phylogeny and ontogeny of behavior," Science, 9, (September 1966).
107. Smith, D. R., and Davidson, C. H., "Maintained activity in neural nets," J. Assoc. Comp. Mach. 9, 268-279 (1962).
108. Smythies, J. R., The Neurological Foundations of Psychiatry, Academic Press, New York, (1966).
109. Sperry, R. W., "Neurology and the mind-brain problem," American Scientist, 40, 291-312(1952).
110. Sprague, J. M., and Chambers, W. W., "Control of posture by reticular formation and cerebellum in the intact, anesthetized and unanesthetized and in the decerebrated cat," J. Exper. Neurol. 170, 52-64 (January 1954).

1I1. Sprague, J. M., Chambers, W. W., and Stellar, E., "Attentive, affective, and adaptive behavior in the cat, " Science 133, 165-173 (January 20, 1961 .
112. Swanson, R. W., "Cybernetic in Europe and the U.S.S. R.-.-.Activities, Plans, and Impressions," AFOSR 66-0579, U. S. Air Force, Washington, D. C. (March 1966).
113. Taub, A., 'Local, segmental, and supraspinal interaction with a dorsolateral spinal cutaneous afferent system, " Exper. Neurology 10, 357-374 (1964).
114. Tauc, L., "The activity of the Mollusc Neuron, " On Integrative Actions in Single Neurons, Endeavour, (January 1966).
115. Ten Hoopen, M., "Multimodal interval distributions, " Kybernetik, (January 1966).
116. Teuber, Hans-Lukas, "The riddle of frontal lobe function in man." 410-444.
117. Valverde, F., :A new type of cell in the lateral reticular formation of the brain stem, ${ }^{1: ~ Z . ~ C o m p . ~ N e u r . ~ 117, ~ 189-196 ~(O c t o b e r ~ 1961) . ~}$
118. Valverde, F., "Reti uiar formation of the pons and medulla oblongata, a Golgi study," J. Comp. Neurol. 116, 71 .-99 (1961).
119. Varju, D., "Central Organization of Neural Systems," Examples of the Quantitative Analysis of Central Nervous Processes A, 23-42.
120. Verveen, A. A., Derksen, H. E., "Fluctuations in membrane potential of axons and the problem of coding, " Kybernetik, (February 1965).
121. Wall, P. D., Personal Communication.
122. Wall, P. D., "The laminar organization of dorsal horn and effects of descending impulses, " Paper 850, Dept. of Biology and Center for Communication Sciences, Research Laboratory of Electronics, MIT, Cambridge, Mass., (1966).
123. Wall, P. D., "Two transmission systems for skin sensations," 475-520. **
124. Weir, B., "Spikes-wave from stimulation of reticular core," J. Exper. Neurol., 209-218 (August 1964).
125. Weiss, P. A., "Specificity in the neurosciences," Neurosciences Res. Prog. Bull. 3, (October 5, 1965).
126. Wiener, N., Nonlinear Problems in Random Theory. MIT Press, Cambridge, Mass., and John Wiley and Sons, New York.
127. Winograd, S., and Cowan, J., Reliable Computation in the Presence of Noise. MIT Press, Cambridge, Mass., (1963).
128. Young, J. Z., A Model of the Brain. Oxford, (1964).

APPENDIX 1

Convergence on a Model

To a certain extent, any chunk of nerve tissue that has to perform both an analyzer and an integrator function, as RF* does, can be viewed as an assembly of coupled nonlinear oscillators. (In a very rich sense, all neural tissue amounts to such an assembly, and certainly behaves nonlinearly overall.) In fact, the variety of abductive logic our RF* employs on its highly correlated input sequences strongly suggests a model of rather tightly-coupled multi-stable oscillator units cooperating probabilistically so as to admit at any given time only one of a small number of possible stable overall operating modes. Thus we turned to Weiner's work on correlation-coupled nonlinear oscillators, which shows that there are forbidden zones about each stable point, and suggests that generally such systems behave as required.126 Figure 8.4 in reference 126) depicts for such a system the shape of the probability distribution of oscillator frequencies about a normalized stable point, as calculated by Wiener. The crucial thing about Figure Al-l as far as our RF* model is concerned is that there is enough variability about the stable point to permit flexible system operation. Unfortunately, we found that a central defect of all such systems is that there is no reasonable analytical or experimental way of determining anything basic about the transient behavior between stable mode points following input changes. The same holds true for every sufficiently complex nonlinear artificial neural net theory we know of to data. (See, for example, references $11,12,18,35,107$.) But to be able to follow such transients is central to our task, so we had to regard these systems as useless. Recalling that single nonlinear oscillators a la Minorsky ${ }^{64}$ behave too rigidly, and that linear systems are unable to exhibit the necessary memory, cell assembly, and modal features, * we abandoned all coupledoscillator and neural-net approaches to RF* theory construction as utterly hopeless.

[^5]probability of oscillator oscillating at that frequency

Figure Al-1. Wiener's Figure 8.4 in reference B-1.

Evidently we required considerably more initial structure than they would afford, i.e., we needed a well-developed set of strategies for designing a skeletal model of RF* behavior. Then we could revert to a computer-simulation and mathematics to investigate the complex behavioral consequences of varying these strategies. In order to pursue this plan without doing too much violence to the biology, we returned to the Scheibels' stack of poker chips analogy. The result is described in Section 4.

APPENDIX 2

γ_{k} Function Table

$$
\gamma_{k}=\left(\sigma_{i} \wedge \sigma_{j}\right) \vee\left(\sigma_{j} \wedge \sigma_{\ell}\right) \vee\left(\sigma_{\ell} \wedge \sigma_{i}\right)
$$

k	i	j	ℓ	k	i	j	ℓ
1	1	2	8	22	2	7	9
2	1	2	8	23	3	4	8
3	1	3	8	24	3	4	9
4	1	3	9	25	3	5	8
5	1	4	8	26	3	5	9
6	1	4	9	27	3	6	8
7	1	5	8	28	3	6	9
8	1	5	9	29	3	7	9
9	1	6	8	30	3	7	9
10	1	6	9	31	4	5	8
11	1	7	8	32	4	5	9
12	1	7	9	33	4	6	8
13	2	3	8	34	4	6	9
14	2	3	9	35	4	7	8
15	2	4	8	36	4	7	9
16	2	4	9	37	5	6	8
17	2	5	8	38	5	6	9
18	2	5	9	39	5	7	8
19	2	6	8	40	5	7	9
20	2	6	9	41	6	7	8
21	2	7	8	42	6	7	9

APPENDIX 3

Some $\sigma_{i} ; F, C, \gamma_{i}$ relationships for E, with only seven σ_{i} and the γ_{i} comprising the set of all 35 3-variable symmetric switching functions of the form $\gamma_{i}=\left(\sigma_{j} \wedge \sigma_{k}\right) \vee\left(\sigma_{k} \wedge \sigma_{l}\right) \vee\left(\sigma_{l} \wedge \sigma_{j}\right)$.

Number of the seven σ_{i} which equal 1	Number of $\sigma_{1}, \ldots, \sigma_{7}$ combinations for which this can happen	Number of the 35 γ_{i} which equal 1 in each of these combinations
1	7	0
2	21	5
3	35	13
4	35	22
5	21	30
6	7	35

$$
\gamma_{\mathrm{j}} \text { - to } \mathrm{M}_{\mathrm{i}} \text { Connection Table }
$$

APPENDIX 5

Exemplary $\left\{\gamma_{i}\right\}, \vec{p}^{\prime}$ Table $\left(6^{\text {th }} \mathrm{M}_{\mathrm{i}}\right)$

ordered 5-tuple of $\gamma_{i_{j}}$ inputs to M_{6}	```\|}\mp@subsup{\vec{p}}{}{\prime}\mathrm{ vector corresponding to overall set of }\mp@subsup{\gamma}{ij}{}\mathrm{ input signals```			
${ }^{\gamma_{6}}{ }_{1} \gamma_{6}{ }_{2} \gamma_{6}{ }^{\gamma} \gamma_{6} \gamma_{6}{ }_{5}$	$\mathrm{p}_{1}{ }_{1}$	$\mathrm{p}^{\prime} 2$	$\mathrm{p}^{\prime} 3$	$\mathrm{p}^{\prime} 4$
00000	0.273	0.152	0.333	0.242
10000	0.625	0.125	0.000	0.250
01000	0.563	0.375	0.000	0.063
11000	0.250	0.250	0.250	0.250
00100	0.250	0.350	0.150	0.250
10100	0.357	0.214	0.071	0.357
01100	0.833	0.167	0.000	0.000
11100	0.500	0.167	0.167	0.167
00010	0.000	0.308	0.385	0.308
10010	0.500	0.000	0.333	0.167
01010	0.692	0.154	0.077	0.077
11010	0.583	0.167	0.083	0.167
00110	0.125	0.333	0.292	0.250
10110	0.333	0.000	0.167	0.500
0110	0.444	0.222	0.111	0.222
11110	0.400	0.200	0.200	0.200
00001	0.000	0.040	0.440	0.520
10001	0.000	0.333	0.111	0.556
01001	0.333	0.222	0.333	0.111
11001	0.250	0.375	0.167	0.208
00101	0.083	0.083	0.417	0.417
10101	0.200	0.250	0.250	0.300
01101	0.500	0.167	0.333	0.000
11101	0.640	0.120	0.120	0.120

Appendix 5 (continued)

00011	0.000	0.000	0.750	0.250
10011	0.000	0.000	0.500	0.500
01011	0.214	0.143	0.357	0.286
11011	0.200	0.400	0.200	0.200
00111	0.333	0.000	0.333	0.333
10111	0.000	0.000	0.438	0.536
01111	0.000	0.750	0.125	0.125
11111	0.212	0.182	0.364	0.242

A5-2

APPENDIX 6

THE PREPARA TION SCHEME FOR APPENDIX 5

1. First of all we constructed a chart of the form:

using the γ-function chart of Appendix 1, and (actually, several different) assignments of Σ_{i} points that we found ${ }^{l}$ yielded enough "interesting and reasonable" ${ }^{2}$ sets of p_{π} vectors for enough Σ_{i} to enable us to perform a meaningful simulation.
2. Then we constructed a chart of the form:

$\Sigma_{\mathrm{i}} \triangleq$	$\gamma 5$-tuple into		
$\sigma_{1}, \sigma_{2}, \ldots, \sigma_{9}$	M_{1}	M_{2}	M_{12}
0 0 . . 0	00000	00000	00000
all 9 tuples			

1. After much labor. This aspect of our simulation design is currently one of the most difficult and crucial.
2. Cf. the text Section on Simulation Results.

> APPENDIX 7
> $\mathrm{M}_{\mathrm{i}}-$ to $-\mathrm{M}_{\mathrm{j}}$ Connection Table

Connections into the $j^{\text {th }}$ module, for $\mathrm{j}=$	Let $a_{j_{k}}$ or $\delta_{j_{k}}$ in the figure above come from the $i^{\text {th }}$ module and go into the $j^{\text {th }}$ module. It carries the $k^{\text {th }}$ component of p_{i}, which we denote $p_{i_{k}}$. Below we list for each $a_{j_{k}}$ and $\delta_{j_{k}}$ the i of the corresponding $p_{i_{k}}$. This gives the module of origin of the connection. $a_{j_{1}} \quad a_{j_{2}} \quad{ }^{a} j_{3} \quad{ }^{a}{ }_{j_{4}} \quad \delta_{j_{1}} \quad \delta_{j_{2}} \quad \delta_{j_{3}} \quad \delta_{j_{4}}$							
3	9	2	4	11	11	4	10	1
4	8	10	10	6	3	12	8	5
5	6	7	7	10	7	1	6	9
6	2	9	3	12	5	8	9	4
7	11	6	5	9	8	5	12	10
8	3	5	2	7	10	3	5	12
9	5	11	6	4	6	10	11	3
10	12	3	9	3	4	7	1	8
11	10	4	12	2	1	6	3	7
12	7	8	8	8	9	11	7	11

APPENDIX 8

Distribution of the $|i-j|$ in the $M_{i}-$ to $-M_{j}$ Connection Table

$\|\boldsymbol{i}-\mathrm{j}\|$	Number of M_{i}-to- M_{j} connections with this $\|i-j\|$	Ideal distribution to satisfy p_{r} (an $\mathrm{M}_{\mathrm{i}}-$ to $-\mathrm{M}_{\mathrm{j}}$ connection with $\|i-j\|=k) \triangleq{ }_{p_{k}}=\frac{C_{0} j}{\sqrt{\|i-j\|}}$, where C_{0} is a connection constant such that 10 $\sum_{k=1}^{\sum} 88 p_{k}=88$, with roundoff to the nearest integers.
1	18	18
2	16	15
3	12	12
4	11	10
5	9	8
6	7	7
7	6	6
8	5	5
9	3	4
10	2	3

$88=$ total $=\left(8 \times 10\right.$ from M_{3} through $\left.M_{12}\right)+$
$\left(4\right.$ from $\left.M_{1}\right)+\left(4\right.$ from $\left.M_{2}\right)$

APPENDIX 9.

SIMULA TION RESULTS
12.01 .60
483137
NU CONVERGENCE THIS CYCLE.
MOUAL PROBABILIIIES AT
MODE 1 MODESENT MOUCLE

$\stackrel{\sim}{\infty}$ | $?$ |
| :--- |
| \bullet |
| \vdots |
| \vdots |

$$
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\circ} \\
& \stackrel{y}{n}
\end{aligned}
$$

$$
\stackrel{n}{\underset{\sim}{\circ}}
$$

$$
\begin{gathered}
n \\
\stackrel{n}{0} \\
\dot{0} \\
\underset{n}{n} \\
\stackrel{n}{0}
\end{gathered}
$$

$$
0.310
$$

$$
\begin{aligned}
& \text { MUSED } 5 \\
& \text { C.S10 } \\
& 0.050 \\
& 0.310
\end{aligned}
$$

$$
0.100
$$

$$
0.310
$$

$$
0.310
$$

$$
0.102
$$

$$
0.310
$$

$$
0.250
$$

$$
\begin{aligned}
& 0.100 \\
& 0.310
\end{aligned}
$$

$$
0.100
$$

$$
0.250
$$

$$
0.250
$$

$$
0.315
$$

$$
0.036
$$

$$
0.315
$$

$$
\begin{aligned}
& 0.315 \\
& 0.036
\end{aligned}
$$

$$
0.315
$$

$$
12.01 .00
$$

$$
\begin{aligned}
& 0 \\
& \stackrel{0}{n} \\
& \stackrel{0}{0}
\end{aligned}
$$

$$
0.315
$$

$$
0.250
$$

$$
\begin{aligned}
& \text { 131 } \\
& \text { YALE. } \\
& \text { TIES AT } \\
& \text { CYCLE } \\
& \text { MULE } \\
& 0.315 \\
& 0.036 \\
& 0.315 \\
& 0.315 \\
& 0.315 \\
& 0.036 \\
& 0.315 \\
& 0.250 \\
& 0.315 \\
& 0.250 \\
& 2.466
\end{aligned}
$$

$$
\begin{aligned}
& \circ \\
& \stackrel{\circ}{0} \\
& \stackrel{1}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rn } \\
& \stackrel{0}{0} \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \circ \\
& \text { O} \\
& 0 \\
& \dot{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sigma}{\delta} \\
& \xi
\end{aligned}
$$

$$
\begin{aligned}
& c ラ \tau \cdot \varepsilon \\
& c ̧ こ \bullet 0
\end{aligned}
$$

$$
\begin{gathered}
\text { SIGMA SET } \\
\text { MOUE } 3
\end{gathered}
$$

$$
\begin{aligned}
& 0.310 \\
& 0.100
\end{aligned}
$$

$$
0.310
$$

$$
\stackrel{\stackrel{0}{m}}{\stackrel{\rightharpoonup}{m}} \underset{\dot{0}}{ }
$$

$$
\begin{aligned}
& 2 \\
& \underset{0}{0} \\
& \stackrel{0}{2}
\end{aligned}
$$

$$
\begin{gathered}
0 \\
\\
\stackrel{0}{0}
\end{gathered}
$$

$$
0.310
$$

$$
02 \tau^{\circ} \varepsilon
$$

$$
0.310
$$

$$
0.310
$$

$$
\begin{gathered}
\stackrel{0}{n} \\
\stackrel{\bullet}{0}
\end{gathered}
$$

$$
\begin{aligned}
& n \\
& \stackrel{n}{0} \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& \vdots \\
& 0
\end{aligned}
$$

$$
0 .<30
$$

$$
\stackrel{\underset{i}{n}}{\stackrel{y}{m}}
$$

MOUAL PROBABILITIES AT ENU
MODE 1 OF MODESENT CYCLE 2 MOUE 3 MODE 4

NO CONVERGENC THIS CYCLE.

12.01 .66

483326		
No CONVERGE	NCE THIS	CYCLE.
MOUAL MODE 1	probabil PRESEN MODE 2	$\begin{aligned} & \text { ITIES AT } \\ & \text { CYCLE } \end{aligned}$ $\text { MOUE } 3$
0.038	0.038	0.884
0.128	0.663	0.117
0.234	0.310	0.197
0.034	0.033	0.416
0.518	0.219	0.064
0.154	0.035	0.197
0.234	0.616	0.041
0.364	0.178	0.185
0.290	0.038	0.123
0.169	0.154	0.138
2.169	2.288	2.367

12.01 .66

	483326		
	CONVERGE	NCE THIS	CYCLE.
MODAL MODE 1		Probabilities at of present cycle mode 2 mOde 3	
	0.040	0.054	0.844
	0.114	0.593	0.115
	0.219	0.276	0.200
	0.051	0.033	0.405
	0.507	0.216	0.077
	0.144	0.036	0.197
	0.186	0.638	0.091
	0.343	0.158	0.171
	0.270	0.044	0.190
	0.197	0.082	0.105
	2.074	2.135	2.400

0.696
0.121 0.201 0.403 $\stackrel{\circ}{\square}$ $\stackrel{\text { N゙ }}{0}$

12.01 .60
483320
NO CONVERGEICE THIS CYCLE.

0.657
0.154
0.218
0.412
0.111
0.235
0.222
0.231
0.209
$\begin{array}{cc}\stackrel{N}{\sim} & \stackrel{N}{n} \\ \stackrel{\sim}{0} & \sim \\ \sim\end{array}$

ว1!アと !531

RUiV NUMEE?

0.214 $\stackrel{m}{\underset{\sim}{2}} \underset{0}{0}$ n
$\stackrel{n}{0}$
$\stackrel{1}{+}$
$\stackrel{0}{0}$ 0.523 n

0

0 \begin{tabular}{c}
N

$\stackrel{0}{0}$

\hline-

 $\stackrel{\rightharpoonup}{a}$ $\stackrel{m}{n}$ $\stackrel{m}{\stackrel{m}{+}}$ $\stackrel{N}{N}$

n

\multirow{2}{n}{}

\multirow{2}{*}{}
\end{tabular}

 483326

$$
\text { ITH CONVERGENT CYCLE, MODL }=4^{12.01 .66}
$$

$$
\begin{aligned}
& \text { MODAL PROBABILITIES AT ENC } \\
& \text { MODE } 1 \text { OF PRESENT CYCLLE } \mathrm{MODE} 2 \text { MODE } 3 \text { MODE } 4
\end{aligned}
$$

$$
0.224
$$

$$
0.465
$$

$$
\begin{aligned}
& 0.594 \\
& 0.534
\end{aligned}
$$

$$
\begin{gathered}
\stackrel{9}{5} \\
\stackrel{0}{0}
\end{gathered}
$$

$$
\begin{aligned}
& \stackrel{\circ}{0} \\
& \stackrel{0}{0}
\end{aligned}
$$

$$
\begin{gathered}
\text { No } \\
\underset{\sim}{\sim}
\end{gathered}
$$

$$
\begin{aligned}
& 0 \\
& \mathbf{N} \\
& \stackrel{\circ}{0}
\end{aligned}
$$

$$
0.523
$$

$$
0.670
$$

$$
\begin{aligned}
& \vec{\rightharpoonup} \\
& \mathbf{j} \\
& \mathbf{j}
\end{aligned}
$$

$$
\begin{array}{ll}
0 & \infty \\
\underset{\sim}{\sim} \\
\stackrel{\sim}{n} \\
\sim
\end{array}
$$

$$
15 \mathrm{TH} \text { CONVERGENI CYCLE, MUUL }=4^{12.01 .60}
$$

$$
\begin{aligned}
& \text { MOUAL PROBABILITILS AT ENC } \\
& \text { MOF PRESENT GYCLE } 1 \text { MODE } 2 \text { MOLE } 3 \text { MODE } 4
\end{aligned}
$$

MCOULE

$$
\begin{aligned}
& \vec{n}
\end{aligned}
$$

$$
\begin{aligned}
& 0.250 \\
& 0.351 \\
& \begin{array}{l}
1.000 \\
0.154
\end{array} \\
& 0.154 \\
& \begin{array}{l}
0.250 \\
0.440
\end{array} \\
& \begin{array}{l}
0.440 \\
0.125
\end{array} \\
& 0.125 \\
& 0.258 \\
& 0.080 \\
& 0.250 \\
& 0.100 \\
& 0.200 \\
& \begin{array}{l}
0.250 \\
0.107 \\
0.303 \\
0.533 \\
0.250 \\
0.343 \\
0.292
\end{array} \\
& \begin{array}{l}
0.292 \\
0.200
\end{array} \\
& \begin{array}{l}
0.100 \\
0.900
\end{array} \\
& 0.780 \\
& 0 . \text { くら } \\
& 0.350 \\
& \stackrel{n}{\stackrel{\rightharpoonup}{\circ}} \underset{0}{\circ} \\
& \begin{array}{l}
0.250 \\
0.081
\end{array} \\
& 0.000 \\
& \begin{array}{l}
0.231 \\
0.200
\end{array} \\
& \begin{array}{l}
0.000 \\
0.375
\end{array} \\
& 0.375 \\
& 0.194 \\
& 0.280 \\
& 0 .<00 \\
& 0.350 \\
& 0.150 \\
& 71 \text { 7ch } 1 \\
& \text { uoco } \\
& 0
\end{aligned}
$$

12.01 .60

$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & n & \vec{n} & n & 0 & n & N \\ N & 0 & n & 0 & 0 & n & n & n & n & n & n \\ 0 & 0 & 0 & n & n & n & n & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

MODE 1 Ot
$\stackrel{m}{\stackrel{m}{9}} \stackrel{\infty}{n} \stackrel{n}{n}$

N		
$\underset{\sim}{0}$		$\overrightarrow{5}$
0	0	0

$\begin{array}{ccc}\underset{\sim}{\sim} & \overrightarrow{0} & \infty \\ \underset{0}{\infty} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
$\begin{array}{ll}0 & N \\ & \text { O } \\ \vdots & + \\ 0 & N\end{array}$

$$
\begin{aligned}
& \begin{array}{l}
0.243 \\
0.205 \\
0.218 \\
0.165
\end{array} \\
& \begin{array}{l}
0.208 \\
0.159
\end{array} \\
& \begin{array}{c}
\vec{N} \\
\stackrel{n}{0} \\
\hline
\end{array} \\
& \underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{N} \\
& \begin{array}{cc}
\stackrel{n}{n} & \tilde{0} \\
\dot{0} & \dot{\sim}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
483326 \\
\text { NO CONVERGENCE THIS CYCLE. } \\
\text { MOUAL PROBAEILITILS AT } \\
\text { MODE OF MOESENT MOUCLE } \\
\text { MODE 2 MODE } 3
\end{gathered}
$$

$$
\begin{aligned}
& 0.218 \\
& 0.191 \\
& 0.195 \\
& 0.192 \\
& 0.204
\end{aligned}
$$

$$
0.180
$$

$$
12.01060
$$

$$
\begin{aligned}
& \stackrel{0}{N} \\
& \dot{0}
\end{aligned}
$$

$$
\begin{array}{ll}
\vec{\sim} & \vec{N} \\
\stackrel{0}{0} & \stackrel{\sim}{0}
\end{array}
$$

12.01 .60

$\underset{\sim}{\sim}$

$$
\begin{aligned}
& 0.178 \\
& 0.145 \\
& 0.139 \\
& 0.137 \\
& 0.149 \\
& 0.126 \\
& 0.145 \\
& 0.133
\end{aligned}
$$

$$
12.01 .60
$$

$$
\begin{aligned}
& 483320 \\
& 1 \text { TH COINERGENT CYCLE, MOOE }= \\
& \text { MODAL PRUBAEILITIES AT } \\
& \text { MODE } 1 \text { OF MODESENT MODELE } 3
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& \stackrel{0}{0} \\
& \hline
\end{aligned}
$$

$$
\begin{array}{ll}
\stackrel{n}{5} \\
\stackrel{0}{0} & y
\end{array}
$$

$$
\begin{gathered}
\overrightarrow{0} \\
\vdots \\
\vdots
\end{gathered}
$$

$$
483320
$$

$$
14 \mathrm{TH} \text { CONVERUEVT CYCLE, MODE }=
$$

$$
\begin{aligned}
& 0.074 \\
& 0.036 \\
& 0.080 \\
& 0.043 \\
& 0.045 \\
& 0.048 \\
& 0.036 \\
& 0.036 \\
& 0.046 \\
& 0.036
\end{aligned}
$$

$$
12.01 .60
$$

$$
\begin{aligned}
& \text { - } \\
& \text { 山े } \\
& \text { ò }
\end{aligned}
$$

MODAL MODE 1	$\begin{aligned} & \text { PROBABI } \\ & \text { PRES } \end{aligned}$ $\text { MODE } 2$	$\begin{gathered} \text { TIES } A \\ \text { CYCLE } \end{gathered}$ houe 3	LNL MUDL 4
0.798	0.074	0.034	0.092
0.872	0.036	0.052	0.039
0.847	0.080	0.035	0.036
0.859	0.043	0.041	0.055
0.878	0.045	0.036	0.039
0.839	0.048	0.076	0.035
0.876	0.036	0.036	0.050
0.852	0.036	0.071	0.039
0.815	0.046	0.038	0.099
0.869	0.036	0.043	0.051
8.508	0.484	0.465	0.541

RUIN N	$\begin{aligned} & 1 \text { CYCLE NUMGER 3U SIGIA SET NO. } \\ & R_{L} \text { GOINS EACK FOR A NLA SIUMA SET } \end{aligned}$				
	NORMALIZこう P－PRIMES FJK PreSEvT SIuMA SE：T				
1	111C1	0.200	$0 . \leq 50$	0.250	0.303
2	11011	0.200	0.250	0.250	0.300
3	11110	0.200	0.250	0.250	0.300
4	111：1	0.200	0.250	0.250	0.300
5	11111	0.200	0.250	0.250	0.300
6	11110	0.400	0.200	0.200	0.200
7	11111	0.200	0.250	0.250	0.300
8	11110	0.400	$0 . さ ู ว$	0.200	0.290
9	111：0	0.200	0.250	0.250	0.303
10	1：1：0	0.400	0.200	0.200	0.200
11	11111	0.200	0.250	0.250	0.302
12	11111	0.200	0.250	0.250	0.300
133	Ti．TAL	3.000	2.350	2.850	3.305

12.01 .06

ruin number 1 cycle number

$$
\begin{array}{cr}
\text { MODULE } & \text { TYFLITE } \\
1 & 100 C 0 \\
2 & 1 \\
3 & 1110 \\
4 & 100 C 1 \\
5 & 10101 \\
6 & 11000 \\
7 & 10001 \\
8 & 10001 \\
9 & 1181 \\
10 & 1260 \\
11 & 11011 \\
12 & 1010 \\
& T .14 L S
\end{array}
$$

$$
12.01 .60
$$

$$
\begin{aligned}
& \text { TH CONVERGENT CYCLE, MODE = } \\
& \text { MOVAL PROBAEILITIES AT } \\
& \text { MODE } 1 \text { OF PRESENT CYCLE MODE } 2 \text { MOLE } 3
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { ENL } \\
\text { MODE } 4 \\
0.161 \\
0.137 \\
0.217 \\
0.140 \\
0.036 \\
0.128 \\
0.113 \\
0.707 \\
0.178 \\
0.130
\end{array} \\
& \begin{array}{l}
\text { MOUAL PROBAEILITILS AT } \\
\text { OF PRESENT CYCLE } \\
\text { MODE } 1 \text { MOLE } 2 \text { MOLE } 3
\end{array}
\end{aligned}
$$

12.01 .66
15Th CONVERÚENT CYCLE, MOUE $=$ 0.084 0.043 0.079 므N
0
0 N
0
0
0 0.034 S
0
0
0 $\begin{array}{ccc}N & 0 & 0 \\ \sim & 0 & + \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ $\begin{array}{ll}0 & n \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$
 -
0.033
0.045
0.033
0.038
0.030 0.079 0
0
0
0 $\begin{array}{ll}\text { n } & n \\ 0 & 0 \\ 0 & 0\end{array}$ n
$\stackrel{\sim}{\sim}$
0 $\begin{array}{ll}\text { t } \\ \stackrel{0}{0} \\ 0 & 0 \\ 0 & 0\end{array}$

MODULE 0.036 0.075 0.036 0.076 0.042 0.030 0.051 0.036 0.028 0.036 | n |
| :--- |
| |
| |

 MO路 0.806

MEER 15 SIGMA SET NO. 4 FOR A NEW SLEVIA SET			
NURTIALIZE C P-HRIFIES FOR Presevt sigria set			
mode 1	MCJこ 2	MOCE 3	MCuE
0.250	0.250	0.250	C.250
0.250	0.250	0.250	0.230
0.250	0.252	0.250	0.230
0.250	0.250	0.250	0.230
0.250	c.250	0.250	0.250
0.250	0.250	0.250	0.230
0.85 C	0.250	0.050	0.050
0.250	0.250	0.250	0.230
0.250	0.250	0.250	0.250
0.100	0.100	0.100	0.700
0.250	0.250	0.250	0.250
0.200	0.259	0.250	0.300
3.400	2.550	2.650	3.300

TES: RETIC

9てعと8
 NO CONVERGENCE THIS CYCLE.

$$
\begin{array}{cccc}
m & \vec{t} & \hat{\infty} & n \\
\overrightarrow{7} & 0 & 0 & 0 \\
\dot{0} & \dot{0} & \dot{0} & \dot{0}
\end{array}
$$

$$
\begin{aligned}
& \stackrel{0}{0} \\
& \underset{0}{\circ} \\
& \dot{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { n } \\
& \stackrel{n}{0} \\
& 0
\end{aligned}
$$

$$
\stackrel{J}{\dot{\sigma}} \underset{\dot{0}}{ }
$$

$$
\begin{array}{ll}
\overrightarrow{0} & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
\begin{aligned}
& 0 \\
& i n \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{array}{ccc}
\infty \\
\stackrel{\rightharpoonup}{+} & \overrightarrow{0} & \stackrel{0}{0} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

TESt: RELIC
71.7 ch 1 $\left.\begin{array}{l}\sim \\ \sim \\ \sim\end{array}\right)$

 MODE 1 MODE 2 MOLE 3

 \begin{tabular}{l}
0

\multirow{3}{\circ}{}

\hline

 $\underset{\underset{0}{\circ}}{\underset{0}{0}}$ \sum_{n}^{n}

\circ

0 \& 0

0 \& 0

0 \& 0
\end{tabular} $\left.\begin{gathered}\tilde{N} \\ \tilde{N} \\ 0 \\ 0\end{gathered} \right\rvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$

3.718 $0.640 \quad 0.1<2$ 2
0
0
0

$$
\left\lvert\, \begin{gathered}
\stackrel{3}{3} \\
\underset{0}{0}
\end{gathered}\right.
$$

$$
\left(\begin{array}{l}
\hat{0} \\
0 \\
0
\end{array}\right)
$$

$$
\begin{array}{lll}
0 & 0 & \hat{0} \\
\stackrel{n}{0} & \underset{0}{0} & 0 \\
0 & 0 & 0
\end{array}
$$

$$
\begin{gathered}
\vec{n} \\
\stackrel{n}{n}
\end{gathered}
$$

$$
\begin{array}{l|l}
0 & \stackrel{n}{0} \\
0 & \stackrel{y}{*} \\
0 & \stackrel{0}{0}
\end{array}
$$

$$
\left.\begin{aligned}
& \sigma \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned} \right\rvert\,
$$$1\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$ 0

\vdots
0
0 (응

$$
\begin{aligned}
& 0.388 \\
& 0.041 \\
& 0.113 \\
& 0.035
\end{aligned}
$$

$$
0.503
$$

$$
0.064
$$

$$
0.035
$$

$$
0.170
$$

$$
0.087
$$

$$
\stackrel{\text { no }}{\underset{0}{\infty}}
$$

$$
\stackrel{\infty}{\stackrel{\infty}{\square}}
$$

$$
\begin{array}{ccc}
\hat{n} & \cdots & n \\
\hdashline & \stackrel{n}{\infty} & \tilde{0} \\
0 & 0 & 0
\end{array}
$$

$$
\begin{aligned}
& \dot{m}_{\infty}^{\infty} \\
& \dot{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { a } \\
\stackrel{1}{0} \\
0 \\
0
\end{array} \\
& \begin{array}{l}
\text { N } \\
\stackrel{0}{\circ} \\
0
\end{array} \\
& \stackrel{0}{\stackrel{0}{+}} \\
& \stackrel{\curvearrowleft}{\stackrel{\circ}{\bullet}} \\
& \begin{array}{cc}
\vec{~} & \stackrel{0}{0} \\
\hdashline- & 0 \\
\dot{0} & 0
\end{array} \\
& \begin{array}{l}
\stackrel{\circ}{+} \\
\stackrel{-}{0}
\end{array} \\
& \begin{array}{l}
\text { n } \\
\stackrel{0}{\circ} \\
\text { - }
\end{array}
\end{aligned}
$$

12.01 .66

0.222
0.043
0.376
0.843
0.136
0.670
0.036
0.234
0.108
0.303
2.977

		NuRMfLIz= N-rfilites for FHESEYI SIGIA SET			
MUDULE	T. Miplmie	MODE 1	100	nole 3	R.OUE 4
1	11	0.000	c.ios	0.548	0.116
2	1111	0.250	0.000	0.750	0.000
3	11	0.296	0.412	0.176	0.118
4	16101	0.usio	0.500	0.000	1.000
5	1001	0.200	0.250	0.250	0.340
6	11101	0.640	0.120	0.120	$0.1 \leq 0$
7	11011	0.125	0.500	0.375	0.000
8	111	0.454	0.166	0.166	0.105
9	1611	0.000	0.200	0.500	0.500
10	111	0.200	c.aso	0.250	0.360
11	1111	0.000	0.250	0.542	0.zue
12	1001	0.333	0.567	0.000	0.000
	titals	2.541	2.561	3.718	2.809

12.01 .66

$$
0.237
$$

$$
0.686
$$

$$
\stackrel{\sim}{N}
$$

$$
\begin{aligned}
& \text { in } \\
& \stackrel{0}{0} \\
& 0
\end{aligned}
$$

$$
\begin{array}{ll}
\underset{\sim}{9} \\
\underset{0}{0} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \stackrel{\circ}{+} \\
& \underset{0}{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \circ \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\stackrel{+}{\underset{\sim}{\sim}} \underset{\sim}{\sim}
$$

\%

\[

\]

$$
\begin{aligned}
& \text { TEST railc } \\
& \text { BER } 1 \mathrm{CYCl}
\end{aligned}
$$

$$
\begin{aligned}
& \text { FKESEV.I SIGRAA StT } \\
& \text { MODL } 1 \text { RHO }=2 \text { RIODE } 3
\end{aligned}
$$

$$
0 . j 60
$$

$$
0.588
$$

$$
\begin{aligned}
& 0.750 \\
& 0.176
\end{aligned}
$$

$$
0.120
$$

$$
0.315
$$

$$
\begin{aligned}
& \text { MOLE } 4 \\
& 0.116 \\
& 0.000 \\
& 0.118 \\
& 1.000 \\
& 0.300 \\
& 0.120 \\
& 0.000 \\
& 0.106 \\
& 0.540 \\
& 0.340 \\
& 0.208 \\
& 0.000 \\
& 2.809
\end{aligned}
$$

No CONVERGEIICE THIS CYCLE．
MODAL PROBAGILITIES AT
MODE 1 OF PRESEIVT CYYLE
MODE 2

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& \tilde{N} \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \circ \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
0.235
$$

$$
\begin{aligned}
& 3 \\
& ? \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& \hat{n} \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 3 \\
& \vdots \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& n \\
& \tilde{0} \\
& 0
\end{aligned}
$$

Tithtis

$$
0 . \div 12
$$

$$
0.120
$$

$$
0.176
$$

$$
0.000
$$

$$
0.166
$$

$$
0.542
$$

$$
3.718
$$

$$
\begin{array}{ll}
\overrightarrow{0} & 0 \\
\stackrel{0}{0} \\
\stackrel{0}{0} & 0 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \stackrel{0}{\sim} \\
& \stackrel{0}{\circ}
\end{aligned}
$$

$$
\begin{array}{ll}
\hat{0} & \vec{n} \\
0 & n \\
0 & n
\end{array}
$$

II 1

$$
\Rightarrow \vec{\exists} \vec{\exists} \vec{\exists}
$$

$$
\begin{array}{ll}
\overrightarrow{3} & \overrightarrow{0} \\
\vec{y} & =
\end{array}
$$

$$
\begin{aligned}
& \overrightarrow{3} \\
& \overrightarrow{3} \\
& =
\end{aligned}
$$

14TH COINVERGENT CYCLE, MOUE $=1212.01 .60$

TiInLs
12.01 .06
CYCLE MODE $=1$

0.062
0.313
$\begin{aligned} & \infty \\
& \stackrel{\infty}{\circ} \\
& \stackrel{\circ}{0}\end{aligned}$

N
-
0

$\begin{aligned} & N \\
& 0 \\
& 0 \\
& 0\end{aligned}$
$\begin{array}{ccc}\tilde{N} & \underset{\sim}{0} & \infty \\
0 & \underset{0}{0} \\
\dot{0} & 0 & 0 \\
0 & 0\end{array}$
$\begin{aligned} & \text { 잉 } \\
& \vdots \\
& 0\end{aligned}$
$\begin{array}{ll}\text { N} & \text { n̈ } \\
0 & \text { a } \\
0 & 0 \\
0 & \end{array}$
$\begin{aligned} & 0.117 \\
& 0.033 \\
& 0.106 \\
& 0.029 \\
& 0.193 \\
& 0.058 \\
& 0.029 \\
& 0.081\end{aligned}$

\circ

$\begin{array}{ll}\sim \\
\stackrel{0}{\circ} & \stackrel{0}{0} \\
\dot{0} & \vdots\end{array}$

$$
\begin{aligned}
& \text { - } \\
& \stackrel{+}{5} \\
& 1.006
\end{aligned}
$$

11.30 .66

482541
NO CONVERGENCE THIS CYCLE．

	$\begin{aligned} & \stackrel{\circ}{\mathfrak{N}} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\underset{\sim}{0}}}$	$\left(\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right]$	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\stackrel{\infty}{\stackrel{\infty}{N}}$	$\begin{gathered} \stackrel{\infty}{N} \\ \stackrel{0}{0} \end{gathered}$	$\underset{\sim}{\infty} \underset{\substack{\infty \\ 0 \\ \hline}}{ }$	$\stackrel{\infty}{N}$	$\stackrel{\infty}{N}$	$\stackrel{\infty}{\sim}$
	No	$\stackrel{\text { N }}{\substack{\text { N }}}$	¢0	$\begin{gathered} \alpha \\ \stackrel{a}{+} \\ \hline 0 \end{gathered}$	$\stackrel{+}{+}$	＋	$\stackrel{\sim}{+}$	$\stackrel{\sim}{+}$	N	$\stackrel{+}{\sim}$
	O	$\stackrel{\sim}{N}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{0}{+}$	$\stackrel{+}{+}$		$\stackrel{\substack{\text {＋} \\ \pm 0}}{\text {－}}$	N		No
	$\stackrel{\bigcirc}{N}$	N	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{\sim}$	$\stackrel{\rightharpoonup}{N}$	$\stackrel{\rightharpoonup}{N}$	$\underset{\sim}{\sim}$	N	$\underset{\sim}{\sim}$	N

$$
11.30 .60
$$

$$
\begin{array}{ll}
\sim \\
\underset{0}{\circ} & \stackrel{0}{0} \\
\vdots \\
\vdots
\end{array}
$$

$11 \cdot 30 \cdot 66$

$$
\begin{aligned}
& 0.415 \\
& 0.480 \\
& 0.774 \\
& 0.535 \\
& 0.415 \\
& 0.285 \\
& 0.647 \\
& 0.382 \\
& 0.243 \\
& 0.430 \\
& 4.611
\end{aligned}
$$

$0.048 \quad 0.161$ $\begin{array}{lll}5 & \infty & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ $\stackrel{-}{-}$ n
0
0
0 $\stackrel{0}{2}$
$\stackrel{-}{0}$ N
$\underset{0}{0}$
0
0 0.207
0.129
$\stackrel{m}{n}$ 15 482541 CONVERGENT CYCLE, MODE $=$
0.048
0.091
0.036
0.060
0.043 0.102 0.046 0.100 0.053 0.062
0.646 0.089
0.040
0.053
0.051
0.043
0.045
0.041
0.043
0.054
0.040
0.506

1ヶऽ28ヵ

$$
\begin{aligned}
& \text { RESENT } \\
& \text { MOD }
\end{aligned}
$$

$$
\text { MODE } 4
$$

$$
11.30 .60
$$

$$
\begin{aligned}
& 2541 \\
& \text { CYCLE } \\
& \text { ITIES AT } \\
& \text { TMCYCLE } \\
& \text { MODE } 3 \\
& \\
& 0.212 \\
& 0.185 \\
& 0.225 \\
& 0.255 \\
& 0.153 \\
& 0.159 \\
& 0.238 \\
& 0.211 \\
& 0.182 \\
& 0.173 \\
& 1.997
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon \exists 00 \mathrm{~W} \\
& 175 \mathrm{FWOLS}
\end{aligned}
$$

YOy sJWIYd-d OEZITVWHON

$$
2 \cdot 0 N 135 \text { vhפIS }
$$

$$
\rightarrow
$$

$\stackrel{\rightharpoonup}{\text { º }}$
number

MODULE Trmplate
 tLTALS

$$
\begin{aligned}
& 0.250 \\
& 0.050 \\
& 0.250 \\
& 0.250
\end{aligned}
$$

$$
\begin{aligned}
& 0.250 \\
& 0.250 \\
& 0.200 \\
& 0.250 \\
& 0.250
\end{aligned}
$$

$$
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 \\
N & N & N & N & \underset{0}{0} \\
0 & 0 & 0 & 0 & \underset{\sim}{0}
\end{array}
$$

$\begin{aligned} & 0.250 \\ & 0.050\end{aligned}$

482541
NO CONVERGENCE THI 5 CYCLE.
MODAL PROBABILITIES AT
MODE 1 MF MODE 2 MOUE 3

$$
\begin{aligned}
& \begin{array}{l}
9 \\
\stackrel{9}{ \pm} \\
\stackrel{+}{\sim}
\end{array}
\end{aligned}
$$

11.30 .60
NO CONVERGENCE THIS CYCLE.
MODAL PROBABILITIES AT
MODE 1 OF PRESENT CYCLE
MODE 2 MOUE 3

RUN NUMBER 2 CYC
317רdwi1
titals

$$
5
$$

$$
\begin{aligned}
& \text { MOUAL PROBABILITIES AT ENU } \\
& \text { MODE } 1 \text { OF PRESENT CYCLE } \\
& \text { MODE } 2 \text { MOUE } 3
\end{aligned}
$$

$$
0.121
$$

$$
0.090
$$

$$
0.073
$$

$$
0.046
$$

$$
0.164
$$

$$
0.087
$$

$$
0.056
$$

$$
0.075
$$

$$
\begin{aligned}
& 0.126 \\
& 0.097
\end{aligned}
$$

$$
0.048
$$

$$
0.042
$$

$$
0.115
$$

$$
0.045
$$

$$
0.065
$$

$$
0.071
$$

$$
0.043
$$

$$
0.041
$$

$$
482541
$$

$$
11.30 .00
$$

$$
\begin{aligned}
& \text { N } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { in } \\
& 0 \\
& 0
\end{aligned}
$$

0
$\stackrel{9}{0}$
0
0
n
\sim
0
0

$$
\begin{aligned}
& 0.720
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{n}{i}
\end{aligned}
$$

MODULE

$$
\begin{aligned}
& \text { TLTALS }
\end{aligned}
$$

$11 \cdot 30.66$

TEST RETIC

$$
\underset{\underset{J}{\omega}}{\stackrel{\omega}{s}} 00
$$

TCTALS
-כרכג SIH1 ヨJNヨפYヨANOS ON

$$
\begin{aligned}
& \text { MODAL PROBABILITILS AT ENL } \\
& \text { OF PRESENT CYCLE } \\
& \text { MODE } 1 \text { MODE } 2 \text { MOUE } 3 \text { MUDE } 4
\end{aligned}
$$

$$
\begin{aligned}
& 0.162 \\
& 0.037 \\
& 0.125 \\
& 0.037
\end{aligned}
$$

$$
\begin{aligned}
& 0.207 \\
& 0.070 \\
& 0.081
\end{aligned}
$$

$$
11.30 .60
$$

$$
\begin{aligned}
& N \\
& \hat{0} \\
& 0 \\
& 0
\end{aligned}
$$

$$
\stackrel{\circ}{\stackrel{\circ}{0}}
$$

$$
\stackrel{\rightharpoonup}{0} \quad \stackrel{\ominus}{\underset{-}{\circ}}
$$

$$
\text { と } \exists 8 \mathrm{~W} \cap \mathrm{~N} N \cap \mathrm{H}
$$

$$
\text { 15TH CONVERGENT CYCLE, MODE }=1
$$

$$
\begin{array}{llllllllll}
\rightarrow & m & n & 0 & j & n & \infty & 0 & \infty & n \\
n & n & \cdots & 0 & N & n & \infty & j & 0 & n \\
\rightarrow & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{aligned}
& 463137 \\
& \text { TH CONVERGENI CYCLE MOUL = } \\
& \text { MOUAL PRUBABILITIES AT } \\
& \text { MOLE } 1 \text { MOR MODE } 2 \text { MOUE } 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { M } \\
& 0 \\
& \infty \\
& \dot{0}
\end{aligned}
$$

$$
\begin{aligned}
& 0.031 \\
& 0.325 \\
& 0.031
\end{aligned}
$$

$$
0.035
$$

$$
\begin{aligned}
& 0.035 \\
& 0.322
\end{aligned}
$$

$$
\begin{aligned}
& 0.154 \\
& 0.031
\end{aligned}
$$

$$
\begin{aligned}
& 0.108 \\
& 0.027 \\
& 0.115 \\
& 0.071
\end{aligned}
$$

$$
0.078
$$

$$
0.052
$$

$$
0.015
$$

$$
\begin{aligned}
& 0.739 \\
& 0.613 \\
& 0.777 \\
& 0.827
\end{aligned}
$$

$$
0.812
$$

$$
0.593
$$

$$
\begin{aligned}
& 0.752 \\
& 0.783
\end{aligned}
$$

$$
\begin{aligned}
& 0.783 \\
& 0.858
\end{aligned}
$$

$$
12.01 .60
$$

$$
\begin{array}{ll}
n & 5 \\
n & 0 \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
\begin{aligned}
& \infty \\
& \sim \\
& \\
& \dot{0} \\
& \dot{0}
\end{aligned}
$$

$$
7.561
$$

$$
0.077
$$

$$
0.052
$$

$$
0.051
$$

$$
\begin{aligned}
& \vec{\sim} \\
& \stackrel{\bullet}{\square}
\end{aligned}
$$

$$
\begin{gathered}
\vec{n} \\
0 \\
0 \\
0
\end{gathered}
$$

$$
\begin{array}{ll}
m & \tilde{n} \\
0 & 0 \\
0 & 0 \\
0 & -
\end{array}
$$

$\begin{array}{ll}0.086 & 0.0 .45 \\ 0.652 & 0.149\end{array}$

$\stackrel{+}{\infty}$
n
$\mathbf{~}$
0
0 0
0
0
0 $\begin{array}{ll}\underset{\sim}{n} & 0 \\ \underset{0}{0} & 0 \\ 0\end{array}$ $\begin{array}{ll}\underset{\sim}{n} & n \\ \cdots & 0 \\ 0 & 0\end{array}$
 0.042

0.156 | \circ |
| :--- |
| |
| |
| 0 | 0.189 0.041 n

N
0
0 $\stackrel{\infty}{\stackrel{0}{\sim}} \underset{\sim}{\square}$ 0.202 $\stackrel{N}{\underset{\sim}{\sim}}$ 0.154
1.419 $0.8<5$
0.041 0.040 0
0
0
0 0.817 0.048 0.132 0.047 $\stackrel{n}{n}$ 0.041

12.01. 66

0.645
0.175
\vec{N}
0
0 $\stackrel{\circ}{\circ}$ +
0
0

0 $\begin{array}{ll}m & 0 \\ \stackrel{0}{0} \\ 0 & 0 \\ 0 & 0\end{array}$ $\underset{0}{N}$ | 0 | | $\stackrel{n}{\sim}$ |
| :---: | :---: | :---: |
| | | \vdots |
| 0 | 0 | |

 n
0
0
0 $\begin{array}{ll}\overrightarrow{7} & \text { nñ } \\ \vdots \\ 0 & \text { n } \\ 0\end{array}$ 0.043
0.169 0.200 0.183 융
0

0 0.155 0.137 0.254 | $\underset{N}{N}$ | ñ |
| :---: | :---: |
| \vdots | |
| 0 | |

ti mplate

MODULE

$$
\rightarrow
$$

m
n
-
 ∞ 0

TEST REIIC
$5 \cdot 0 \mathrm{Cr} 35 \mathrm{mis}$
RUN Numbez 2 CYCle NUMBER

د
$\stackrel{\rightharpoonup}{2}$
$\stackrel{0}{2}$

$$
\begin{aligned}
& 482541 \\
& \text { 25TH CONVERGENT CYCLE, MODE = } \\
& \text { MOUAL PROBABILITIES AT } \\
& \text { MODE } 1 \text { MFRESENT CYCLE MODE } 2 \text { MODE } 3
\end{aligned}
$$

$$
\begin{array}{ll}
\infty & \hat{n} \\
\hat{n} & \hat{n} \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
\begin{aligned}
& \text { N } \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{array}{lll}
\mathbf{5} & \text { T } \\
0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

$$
\begin{array}{ll}
5 \\
0 & \infty \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
0.051
$$

$$
0.198
$$

$$
0.046
$$

$$
0.084
$$

$$
0.044
$$

$$
0.047
$$

$$
0.050
$$

$$
0.060
$$

$$
0.079
$$

$$
482541
$$

$$
\begin{aligned}
& o \\
& \stackrel{0}{0} \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
0.701
$$

$$
\begin{aligned}
& 0.098 \\
& 0.042 \\
& 0.047 \\
& 0.063
\end{aligned}
$$

$$
11.30 .66
$$

$$
\begin{array}{llllll}
t & n & n & 0 & n & n \\
0 & 0 & 0 & \vec{J} & 0 & \tilde{0} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{aligned}
& 0 \\
& \stackrel{0}{0} \\
& \dot{0}
\end{aligned}
$$

$$
\underset{\sim}{\sim}
$$

$$
\begin{array}{ll}
\underset{\sim}{\infty} & \stackrel{0}{\infty} \\
\stackrel{-}{0} & \stackrel{0}{0}
\end{array}
$$

11.30 .66
482541
NO CONVERGENCE THIS CYCLE.
MOLAL PROBAEILITIES AT
MODE 1 PRESENT GYCLE

MOLAL PROBAEILITIES AT
MODE 1 OF PRESENT MODEL 2 MOUE 3
0.189
0.132
0.184
0.117 $\stackrel{\infty}{\infty} \underset{0}{\infty} \underset{0}{ \pm}$ $\stackrel{\infty}{\stackrel{\infty}{+}}$ $\underset{0}{\stackrel{m}{0}}$ $\underset{0}{\stackrel{\rightharpoonup}{0}}$ 0
n
\vdots
-

MODULE	T: MPLATE	NORMALIZミD P-PRIMES FOR PRESEVT SIGMA SET			
		MODE 1	MOD 2	mode 3	MODE 4
1	10111	0.250	0.255	0.250	0.250
2	10100	0.250	0.252	0.250	0.250
3	100	0.250	0.450	0.250	0.230
4	2001	0.250	0.250	0.250	0.250
5	10110	0.250	0.250	0.300	0.200
6	1001	0.250	0.250	0.250	0.250
7	1110	0.300	0.250	0.250	0.200
8	1100	0.250	0.250	0.250	0.250
9	10101	0.250	0.250	0.250	0.250
10	1011	0.200	0.400	0.200	0.200
11	10000	0.250	0.250	0.250	0.250
12	110	0.230	0.250	0.250	0.250
	titals	3.000	3.150	3.000	2.850

0.241
0.227
0.266
0.246
0.254
0.254
0.237
0.203
0.249
0.250
2.430
0.259
0.299
0.251
0.255
0.252
0.253
0.287
0.389
0.258
0.251
2.759

\llcorner	

MUDULE
$\stackrel{\circ}{\sim}$

$$
\sim
$$

$$
\begin{aligned}
& \text { MODAL PROBABILITIES AT END } \\
& \text { MODE PRESENT CYCLE } 1 \text { MODE } 2 \text { MOLE } 3 \text { MODE } 4
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{5}{0} \\
& 0 \\
& 0
\end{aligned}
$$

$$
\stackrel{m}{0}
$$

$$
\begin{aligned}
& \stackrel{\ddagger}{\circ} \\
& \stackrel{0}{0} \\
& \stackrel{0}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{m}{f} \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{array}{ll}
\infty & 0 \\
\stackrel{0}{0} & \stackrel{0}{0} \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
\begin{aligned}
& \overrightarrow{0} \\
& \stackrel{0}{0} \\
& 0
\end{aligned}
$$

$$
\begin{gathered}
482541 \\
14 \mathrm{TH} \text { CONVERGENT CYCLE, MODE }=
\end{gathered}
$$

$$
\begin{aligned}
& \infty \\
& \stackrel{\infty}{n} \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{gathered}
\vec{~} \\
\stackrel{\rightharpoonup}{0}
\end{gathered}
$$

$$
\begin{aligned}
& \overrightarrow{0} \\
& \infty \\
& \stackrel{+}{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& 0.035 \\
& 0.034 \\
& 0.044 \\
& 0.070 \\
& 0.043
\end{aligned}
$$

$$
0.033
$$

$$
0.033
$$

$$
0.068
$$

$$
0.033
$$

$$
0.835
$$

$$
0.886
$$

$$
0.881
$$

$$
0.862
$$

$$
0.887
$$

$$
0.884
$$

$$
0.856
$$

$$
0.831
$$

$$
0.885
$$

$$
0.043
$$

$$
0.036
$$

$$
0.033
$$

$$
0.035
$$

$$
0.072
$$

$$
0.034
$$

$$
0.066
$$

$$
0.031
$$

$$
0.039
$$

$$
11.30 .66
$$

$$
\begin{aligned}
& 0.090 \\
& 0.035 \\
& 0.037 \\
& 0.034
\end{aligned}
$$

$$
0.043
$$

$$
\begin{aligned}
& \approx \\
& \stackrel{0}{0} \\
& \infty \\
& \infty
\end{aligned}
$$

$$
\begin{aligned}
& n \\
& \hat{n} \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{4} \\
& \substack{0 \\
0 \\
\hline}
\end{aligned}
$$

$$
\begin{aligned}
& 11.30 .66 \\
& \begin{array}{l}
\text { 482541 } \\
\text { TH CONVERGENT CYCLE, MODE }=2
\end{array} \\
& \begin{array}{l}
0.090 \\
0.035
\end{array} \\
& \begin{array}{l}
\text { r} \\
0 \\
0 \\
0
\end{array} \\
& \begin{array}{ll}
\text { N } & m \\
0 & 0 \\
0 & 0
\end{array} \\
& \begin{array}{l}
n \\
0 \\
0 \\
0
\end{array} \\
& \begin{array}{c}
\stackrel{7}{2} \\
0 \\
0 \\
0
\end{array} \\
& \begin{array}{lll}
\underset{\sim}{m} & \mathbf{m} & \infty \\
0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array} \\
& \begin{array}{l}
\circ \\
\stackrel{0}{+} \\
\stackrel{\circ}{\circ}
\end{array} \\
& \begin{array}{l}
\overrightarrow{0} \\
0 \\
0 \\
0
\end{array} \\
& \begin{array}{l}
0.038 \\
0.043 \\
0.036 \\
0.033 \\
0.035 \\
0.071 \\
0.034 \\
0.066 \\
0.031 \\
0.039 \\
0.431
\end{array} \\
& \begin{array}{ll}
\text { n } & \infty \\
\infty \\
\infty \\
\infty \\
\dot{\infty} & \infty \\
0 & 0 \\
\hline
\end{array} \\
& 0.881 \\
& \begin{array}{l}
N \\
\infty \\
\stackrel{\infty}{\infty} \\
\hline
\end{array} \\
& 0.887 \\
& \begin{array}{r}
\vec{\circ} \\
\stackrel{\circ}{\circ} \\
\stackrel{\circ}{\circ}
\end{array} \\
& \begin{array}{l}
\pm \\
\infty \\
\stackrel{\infty}{\infty} \\
\stackrel{+}{0}
\end{array} \\
& \begin{array}{cc}
\infty & \vec{\infty} \\
\infty & \infty \\
\vdots & \vdots \\
0 & 0
\end{array} \\
& \begin{array}{l}
\text { n } \\
\mathbf{\infty} \\
\infty \\
\infty \\
0
\end{array} \\
&
\end{aligned}
$$

$$
\begin{gathered}
482541 \\
\text { ITH CONVERGENT CYCLE, MODE : }
\end{gathered}
$$

0.089
0.086
0.085
$\begin{array}{lll}\underset{\sim}{0} & \vec{\infty} & \tilde{0} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ 0.102
0.030

$$
11.30 .66
$$

 $\stackrel{\circ}{\underset{\sim}{0}} \stackrel{\infty}{\circ}$ $\begin{array}{ll}\text { T } \\ \stackrel{0}{n} \\ 0 & \text { ñ } \\ i\end{array}$
 $\begin{array}{cccccc}\sim & \vec{\infty} & \cdots & \tilde{0} & \stackrel{0}{0} & 0 \\ 0 & 0 \\ 0 & 0 & 0 & \stackrel{\infty}{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ $\begin{array}{lll}0 & n & r \\ 0 & \overrightarrow{0} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ $\begin{array}{ll}\stackrel{\infty}{\circ} \\ \stackrel{\circ}{\circ} & \stackrel{0}{\circ} \\ \stackrel{\circ}{\circ} & \end{array}$

$$
\text { 2TH CONVERGENT CYCLE, MODE }=2^{11.30 .66}
$$

$$
\begin{aligned}
& \text { MODAL PROBABILITIES AT END } \\
& \text { OF PRESENT CYCLE } \\
& \text { MODE } 1 \text { MODE } 2 \text { MOUE } 3 \text { MODE } 4
\end{aligned}
$$

$$
\begin{aligned}
& 0.112 \\
& 0.129
\end{aligned}
$$

$$
\begin{aligned}
& \alpha \\
& \infty \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{\sim} \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{array}{ll}
\vec{~} & \stackrel{\sim}{n} \\
\stackrel{0}{0} & 0 \\
0 &
\end{array}
$$

$$
\begin{aligned}
& \text { r } \\
& \stackrel{+}{+} \\
& \dot{0}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{H}{i n} \\
& \infty \\
& \bullet \\
& 0
\end{aligned}
$$

$$
\underset{\sim}{\sim}
$$

$$
\begin{aligned}
& 0.111 \\
& 0.146
\end{aligned}
$$

$$
0.101
$$

$$
0.081
$$

$$
0.089
$$

$$
\begin{aligned}
& \circ \\
& \infty \\
& 0 \\
& \bullet \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \approx \\
& \hdashline \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \infty \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { N } \\
& \underset{\sim}{\sim} \\
& \stackrel{\circ}{0}
\end{aligned}
$$

$$
\begin{aligned}
& \infty \\
& + \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{gathered}
\vec{a} \\
i \\
\vdots \\
\rightarrow
\end{gathered}
$$

∞
TEST RETIE

$$
\text { RUN NUMBER } 2 \text { CYCLE }
$$

NUMBER

$$
2
$$

SIGMA. SET NO.

$$
10100
$$

NORMALIZED P-PRIMES FOR
PRESE VT SIGMA SET MODE 1 PRESENT SIGMA SET
0.250 $0 ヶ 2^{\circ} 0$ 0.250 0.250 0.250 $0 \zeta 2^{\circ} 0$
$0 \varsigma 2^{\circ} 0$
$0 \varsigma 2^{\circ} 0$ 0.100 0.250 0.250
0.700 ㅇ
R
0
0 O
$\stackrel{0}{0}$
n

 $C 52^{\circ} 0$ 0.250 \begin{tabular}{c}
n

\multirow{1}{N}{}

0

 0.250 0.250 0.250

0

\multirow{2}{0}{}

0
\end{tabular} 0.700 0.250 \circ

0
0
0 0.350 3.100 MODE 1
0.250 0.250 0.250 0.250 0.250 0.250 0.250
0.250 $\stackrel{-}{\circ}$ 0
n
0
0 $\stackrel{0}{0}$ 0
n
0

0 | \circ |
| :--- |
| 0 |
| |
| |

$$
\begin{aligned}
& 10100 \\
& 10101 \\
& 1100
\end{aligned}
$$

$$
\overrightarrow{-0}
$$

$$
\xrightarrow{\circ}
$$

$$
\begin{aligned}
& \mathrm{O} \\
& \rightarrow \\
& \rightarrow
\end{aligned}
$$

$$
\overrightarrow{0}
$$

$$
\stackrel{\rightharpoonup}{0}
$$

$$
\begin{aligned}
& \vec{O} \\
& \vec{T}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{O} \\
& \mathrm{O} \\
& \hline
\end{aligned}
$$

$$
0
$$

MODULE

$$
\rightarrow N m \rightarrow i \infty \quad 0 \quad 0
$$

FLOW CHART OF PROGRAM

12.01 .60
483137
NU CONVERGENCE THIS CYCLE.

	moual MODE 1	probalil or presen MODE 2	itils at CYCLL mole 3	LNL
	0.046	0.317	0.194	0.442
	0.665	0.118	0.067	0.149
	0.048	0.281	0.414	4.255
	0.046	0.250	0.480	0.621
	0.184	0.250	0.352	0.212
	0.653	0.143	0.117	0.084
	0.044	0.260	0.392	0.302
	0.409	0.207	0.229	0.153
	0.104	0.295	0.299	0.300
	0.210	0.294	0.300	0.194
	$\begin{aligned} & 2.413 \\ & \text { MUDE IV } \\ & 0.231 \end{aligned}$	2.419	2.849	2.317
00	9.2717	33460-01		

 0.121
0.033
0.075
0.066 5
0
0 $\begin{array}{ll}\tilde{n} & \mathfrak{D} \\ 0 & 0 \\ 0 & 0\end{array}$ 9
0
0
0 $\begin{array}{ll}\infty & n \\ 0 & 4 \\ 0 & 0\end{array}$ n
0
0 5
0
0
0
 0.812 0.593 0.803 0.752 0.783 0.858
7.561 0.108
0.027
0.115
0.071 0.078 0.052 0.077 N゙
0
0 0.075 0.051
$\underset{\vdots}{\underset{\circ}{\rightleftarrows}}$ $\begin{array}{lllll}\vec{n} & \underset{\sim}{n} & \vec{n} & \tilde{n} & n \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}$ 0.035 0.322 0.031 0.154
0.031 0.031

0.033 | N |
| :--- |
| 0 |

 $\stackrel{\sim}{\sim}$ | | $\stackrel{0}{2}$ |
| :--- | :--- |
| $\underset{0}{0}$ | \vdots |
| 0 | -1 | 3 IH COIVVERGENT CYCLE，MOUL $=$

WEJEK 4 SICJMA SET NO． 4			
NuKriallz＝j rarkIMES FJK			
MOUE 1	$\begin{gathered} \text { PHESEVI } \\ \text { MOJ } 2 \end{gathered}$	MA St T MOUE 3	MOUL 4
0.100	0.300	0.300	0.300
U．くbu	0．くら）	0.230	0.203
U．700	0.100	0.100	0.100
0.100	0.300	0.300	0.300
0.100	O．suj	0.360	0.300
0.100	0.300	0.300	0.300
0.100	0.100	0.100	0.140
0.100	0.300	0.300	0.300
0.80	0.450	0.250	0.200
0.100	0.302	0.300	0.300
0.230	0.250	0.250	0.250
0.100	C． 300	0.300	$0.3 \cup 0$
2.850	3.350	3.050	3.050

RUN NUMEEZ 3 CYCIE
MOUULE
T. MPLATE

DOCUMENT CONTROL DATA - R \& D

(Security classification of illo, body of abatract and indexing annotation must be entered whon the ovorall report ls clasalfied)

1. ORIGINATING ACTIVITY (Corporate awthor) Michigan State University Dept of Electrical Engineering East Lansing, Mich. 48823	2a. REPC UNC	CUAITY CLASBIFICATION IFIED
	2b. GROU	
3. REPORT TITLE SOME MECHANISMS FOR A THEORY OF THE RETICULAR FORMATION		
4. DESCRIPTIVE NOTES (TYPD of report and inclusive detes) Scientific final		
B. AUTHOR(S) (Firat name, middle Inilial, last name) William L. Kilmer, Warren S. McCulloch, and Jay Blum		
©. AEPORT DATE Feb. 1967	2e. TOTAL NO. OFPAGES 110	7b. NO. OF REFS 128
BA. CONTRACT OR GRANT NO. AF-AFOSR-1023-66 b. PMOJECT NO. $9769-04$	9a. ORIGINATOR'S REPOR	ER(S)
c. 61445014 d. 681304		
10. DISTRIBUTION STATEMENT Distribution of this document is unlimited.		

11. SUPPLEMENTARY NOTES

TECH, OTHER
12. SPONSORING MILITARY ACTIVITY

Air Force Office of Scientific Research Directorate of Information Sciences Arlington, Virginia 22209
 times called the reticular formation, has retained the power to commit the whole anima to one mode of behavior rather than another. Its anatomy, or wiring diagram, is fairly we 11 known, but to date no theory of its circuit action has been proposed that could possibly account for its known performance. Its basic structure is that of a string of similar modules, wide but shallow in computation everywhere, and connected not merely from module to adjacent module, but by long jumpers between distant modules. Analysis of its circuit actions heretofore proposed in terms of finite automata or coupled nonlinear oscillators has failed. We propose a radical set of nonlinear, probabilistic hybrid computer concepts as guidelines for specifying the operational schemata of the above modules. Using the smallest numbers and greatest simplifications possible, we arrive at a reticular formation concept consisting of 12 anastomaticallycoupled modules stacked in columnar array. A simulation test of its behavior shows that despite its 800 -line complexity, it still behaves as an integral unit, rolling over from stable mode to stable mode according to abductive logical principles, and as directed by its succession of input 60-tuples. Our concept employs the following design strategies: modular focusing of input information; modular decoupling under input changes; modular redundancy of potential command (modules having the most information have the most authority); and recruitment and inhibition around reverberatory loops. Presently we are augmenting these strategies to enable our model to condition, habituate, generalize discriminate, predict, and generally follow a changing environment. Our program is epistemological. We are trying to develop reticular formation concepts which are complex, precise, and valid enough to inspire reasonable experiments on the functional organizal

[^0]: ${ }^{1}$ Associate Professor, Department of Electrical Engineering, Michigan State University, and Consultant, Massachusetts Institue of Technology Instrumentation Laboratory

 2
 Research Associate, Research Laboratory of Electronics, Massachusetts Institute of Technology, and Consultant, Massachusetts Instrumentation Laboratory
 ${ }^{3}$ Massachusetts Institute of Technology Instrumentation Laboratory

[^1]: * This paragraph is mostly a rebuttal to comments made by engineers on an earlier version of this report.

[^2]: *"Nonspecific" projection tells cortex what functions to compute, but does not furnish the information for computation. The projection referred to mostly passes through at least one thalamic-level (i.e., diencephalic) synapse.

[^3]: * "V"is logical inclusive or, "and" \wedge " is logical "and," with (l $\wedge 0)=0$ and $(1 \vee 0)=1$.

[^4]: * In this paper we include the first run only. All three runs are included in the corresponding Michigan State University Division of Engineering Research Report.

[^5]: * In other words, the long-term responses of linear systems are determined in a $1: l$ manner from their input drives, whereas this is not true for nonlinear systems. So in this sense, linear systems are irredundant, whereas nonlinear ones have a chance of being redundant in the right way for modeling neural behavior.

